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Preface

The success of the digital revolution and the growth of the Internet have
ensured that huge volumes of high-dimensional multimedia data are available
all around us. This information is often mixed, involving different datatypes
such as text, image, audio, speech, hypertext, graphics, and video components
interspersed with each other. The World Wide Web has played an important
role in making the data, even from geographically distant locations, easily
accessible to users all over the world. However, often most of this data are
not of much interest to most of the users. The problem is to mine useful
information or patterns from the huge datasets. Data mining refers to this
process of extracting knowledge that is of interest to the user.

Data mining is an evolving and growing area of research and development,
both in academia as well as in industry. It involves interdisciplinary research
and development encompassing diverse domains. In our view, this area is
far from being saturated, with newer techniques and directions being pro-
posed in the literature everyday. In this age of multimedia data exploration,
data mining should no longer be restricted to the mining of knowledge from
large volumes of high-dimensional datasets in traditional databases only. Re-
searchers need to pay attention to the mining of different datatypes, includ-
ing numeric and alphanumeric formats, text, images, video, voice, speech,
graphics, and also their mixed representations. Efficient management of such
high-dimensional very large databases also influence the performance of data
mining systems. Data Compression technologies can play a significant role.

xv
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It is also important that special multimedia data compression techniques are
explored especially suitable for data mining applications.

With the completion of the Human Genome Project, we have access to
large databases of biological information. Proper analysis of such huge data,
involving decoding of genes in the DNA and the three-dimensional protein
structures, holds immense promise in Bioinformatics. The applicability of
data mining in this domain cannot be denied, given the lifesaving prospects
of effective drug design. This is also of practical interest to the pharmaceutical
industry.

Different forms of ambiguity or uncertainty inherent in real-life data need
to be handled appropriately using soft computing. The goal is to arrive at
a low-cost, reasonably good solution, instead of a high-cost, best solution.
Fuzzy sets provide the uncertainty handling capability, inherent in human
reasoning, while artificial neural networks help incorporate learning to min-
imize error. Genetic algorithms introduce effective parallel searching in the
high-dimensional problem space.

Since all these aspects are not covered in that elaborate form in current
books available in the market, we wanted to emphasize them in this book.
Along with the traditional concepts and functions of data mining, like clas-
sification, clustering, and rule mining, we wish to highlight the current and
burning issues related to mining in multimedia applications and Bioinformat-
ics. Storage of such huge datasets being more feasible in the compressed
domain, we also devote a reasonable portion of the text to data mining in the
compressed domain. Topics like text mining, image mining, and Web mining
are covered specifically.

Current trends show that the advances in data mining need not be con-
strained to stochastic, combinatorial, and/or classical so-called hard optimization-
based techniques. We dwell, in greater detail, on the state of the art of soft
computing approaches, advanced signal processing techniques such as Wavelet
Transformation, data compression principles for both lossless and lossy tech-
niques, access of data using matching pursuits in both raw and compressed
data domains, fundamentals and principles of classical string matching algo-
rithms, and how all these areas possibly influence data mining and its future
growth. We cover aspects of advanced image compression, string matching,
content based image retrieval, etc., which can influence future developments
in data mining, particularly for multimedia data mining.

There are 10 chapters in the book. The first chapter provides an introduc-
tion to the basics of data mining and outlines its major functions and applica-
tions. This is followed in the second chapter by a discussion on soft computing
and its different tools, including fuzzy sets, artificial neural networks, genetic
algorithms, wavelet transforms, rough sets, and their hybridizations, along
with their roles in data mining.

We then present some advanced topics and new aspects of data mining
related to the processing and retrieval of multimedia data. These have di-
rect applications to information retrieval, Web mining, image mining, and
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text mining. The huge volumes of data required to be retrieved, processed,
and stored make compression techniques a promising area to explore, in the
context of both images and texts. Chapter 3 introduces the readers to the
fundamentals of multimedia data compression and some popular algorithms
for data compression. We discuss the principles of string matching and some
classical algorithms in Chapter 4. Results of string matching hold ample
promise both in multimedia applications and in Bioinformatics.

Chapters 5 to 8 concentrate on classification, clustering, and rule mining.
In each of these topics, in addition to the classical discussions that are usually
available in the books currently in the market, we strive to incorporate new al-
gorithms and results based on soft computing and advanced signal processing
techniques with recent developments.

We deal with multimedia data mining in Chapter 9. In this chapter we
have discussed text mining, image mining, and Web mining issues. Next we
introduce the readers to issues from Bioinformatics, in Chapter 10. In each
case we discuss the related algorithms, showing how these can be a growing
area of study in the light of data mining in the near future.

Finally, we pose some research problems, issues, and new direction of
thoughts for researchers and developers. We have kept the presentation con-
cise and included an exhaustive bibliography at the end of each chapter. Be-
cause reported research articles in relevant domains are scarce and scattered,
we have tried to make them collectively accessible from the unified framework
of this book. Some portion of the material in this book also covers our pub-
lished work, which has been presented and discussed in different seminars,
conferences, and workshops.

The book may be used in a graduate-level course as a part of the subject
of data mining, machine learning, information retrieval, and artificial intelli-
gence, or it may be used as a reference book for professionals and researchers.
It is assumed that the readers have adequate background in college-level math-
ematics and introductory knowledge of statistics and probability theory.

For the major part of this project we worked from the two ends of this
world, often communicating via the Internet. We have collected a great deal
of rich information from the Internet. Thereby, we were the true beneficiaries
of today's information technology. Progress in data mining will further pave
the way for usage of information technology in every walk of life in near future.
We are glad that we could complete this project in a short time within the
schedule.

We take this opportunity to thank Dr. Val Moliere of John Wiley & Sons,
Inc., for her initiative and encouragement throughout this project. She was
very helpful in every stage of compilation of this book. We are grateful to Mr.
B. Uma Shankar, Mr. Sudip Chakraborty, and Ms. Maya Dey for their valu-
able assistance while preparing the camera-ready manuscript. We sincerely
thank Dr. Ping-Sing Tsai, who assisted by reviewing a number of chapters of
the book and who provided valuable suggestions to further enrich the content.
We extend our gratitude to Dr. Amit K. Das of Bengal Engineering College
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in India, who supplied some material on content-based image retrieval in a
very short notice. Prof. Malay K. Kundu, Prof. Chaitali Chakraborti, Dr.
Andrew J. Griffis, Dr. Dragos Arotaritei, Dr. Rajat K. De, Dr. Pabitra Mi-
tra, Mr. Roger Undhagen, and Mr. Jose M. Rodriguez deserve special thanks
for their continuous encouragement and support towards the compilation of
this treatise. We would also like to thank the anonymous reviewers of our
book proposal for their very constructive review and suggestions.

Finally, sincere gratitude goes to each member of our families for bearing
with us, especially by putting up with our erratic schedules during the final
phase of this project. We are truly indebted to them for their love, encour-
agement, dedication, and support.

Sushmita Mitra
April 2003 Tinku Acharya



1
Introduction to Data

Mining

1.1 INTRODUCTION

The digital revolution has made digitized information easy to capture, process,
store, distribute, and transmit [l]-[3j. With significant progress in computing
and related technologies and their ever-expanding usage in different walks of
life, huge amount of data of diverse characteristics continue to be collected
and stored in databases. The rate at which such data are stored is growing
phenomenally. We can draw an analogy between the popular Moore's law
and the way data are increasing with the growth of information in this world
of data processing applications. The advancement of data processing and the
emergence of newer applications were possible, partially because of the growth
of the semiconductor and subsequently the computer industry. According to
Moore's law, the number of transistors in a single microchip is doubled every
18 months, and the growth of the semiconductor industry has so far followed
the prediction. We can correlate this with a similar observation from the data
and information domain. If the amount of information in the world doubles
every 20 months, the size and number of databases probably increases at
a similar pace. Discovery of knowledge from this huge volume of data is a
challenge indeed. Data mining is an attempt to make sense of the information
explosion embedded in this huge volume of data [4].

Today, data are no longer restricted to tuples of numeric or character rep-
resentations only. The advanced database management technology of today
is enabled to integrate different types of data, such as image, video, text,
and other numeric as well as non-numeric data, in a provably single database
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in order to facilitate multimedia processing. As a result, traditional ad hoc
mixtures of statistical techniques and data management tools are no longer
adequate for analyzing this vast collection of mixed data.

The current Internet technology and its growing demand necessitates the
development of more advanced data mining technologies to interpret the in-
formation and knowledge from the data distributed all over the world. In
the 21st century this demand will continue to grow, and the access of large
volumes of multimedia data will become a major transforming theme in the
global society. As an example, a report on the United States Administrations
initiative in the "Information Technology for 21st Century" [5] indicated im-
proved Internet and multimedia applications in World Wide Web encompass-
ing information visualization, interpretation, processing, analysis, etc. Hence
development of advanced data mining technology will continue to be an im-
portant area of study, and it is accordingly expected that lots of energy will
be spent in this area of development in the coming years.

There exist several domains where large volumes of data are stored in cen-
tralized or distributed databases. Some of the examples include the following.

• Digital library: This is an organized collection of digital information
stored in large databases in the form of text (encoded or raw) and pos-
sibly as a large collection of document imagery [6].

• Image archive: This consists of large database of images, in either com-
pressed or raw form. Often the image data are interspersed with text
and numeric data for proper indexing, retrieval, and storage manage-
ment.

• Bioinformatics: The machinery of each human body is built and run
with 50,000 to 100,000 different kinds of genes or protein molecules, and
we have five and half billion population in this diverse world. Bioin-
formatics involves analyzing and interpreting this vast amount of data
stored in these large genomic databases [7].

• Medical imagery: Large volumes of medical data are generated everyday
in the form of digital images such as digital radiographs, EKG, MRI,
CAT, SCAN, etc. They are stored in large centralized or distributed
databases in medical management systems. Automatic mining of these
data is important to the medical community.

• Health care: In addition of the above medical image data, other non-
image datatypes are also generated everyday. This may include health
insurance information, patient's personal care physician's information,
specialist information, patient's medical history, etc. In addition to
these, several diagnostic information are stored by hospital management
systems [8] for ready reference or research.
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• Finance and investment: Finance and investment is a big data domain
of interest for data mining. It includes, but is not limited to, stock
indices, stock prices, historical performance of each stock, information
about the bonds, notes, treasury and other security investments, bank-
ing information, interest rates, loan information, credit card data, debit
card data, ATM card information, credit history of an individual, and
fraud detection [9].

• Manufacturing and production: A huge volume of manufacturing and
production data is generated in different forms in factories. Efficient
storage and access of these data and their analysis for process opti-
mization and trouble shooting is very important in the manufacturing
industry [10].

• Business and marketing: Data need to be analyzed for sales forecast,
business planning, marketing trend, etc.

• Telecommunication network: There are different types of data generated
and stored in this application domain. They may be used to analyze
calling patterns, call tracing, network management, congestion control,
error control, fault management, etc.

• Scientific domain: This consists of astronomical observations [11], ge-
nomic data, biological data, etc. There has been an exponential growth
in the collection and storage of biological databases over the last couple
of years, the human genome database being one such example.

• The World Wide Web (WWW) [12]: A huge volume of multimedia data
of different types is distributed everywhere in the Internet. The World
Wide Web can be considered as the largest distributed database that
ever existed. It consists of data that are heterogeneous in nature, and
it happens to be the most unorganized database management system
known today.

• Biometrics: Because of the need of extraordinary security of human lives
today, biometric applications will continue to grow for positive identifi-
cation of persons. A huge volume of biometric data such as fingerprint,
face imagery, etc., need to be stored and used, for access and search
toward this end.

Raw data are rarely of direct benefit. Its true value is predicated on (a)
the ability to extract information useful for decision support or exploration
and (b) understanding the phenomenon governing the data source. In most
domains, data analysis was traditionally a manual process. One or more ana-
lyst (s) would become intimately familiar with the data and, with the help of
statistical techniques, provide summaries and generate reports. In effect, the
analyst acted as a sophisticated query processor. However, such an approach
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rapidly broke down as the size of data grew and the number of dimensions
increased. Databases containing number of data on the order of 109 or above
and dimension on the order of 103 are becoming increasingly common. When
the scale of data manipulation, exploration and inferencing goes beyond hu-
man capacities, people need the aid of computing technologies for automating
the process.

All these have prompted the need for intelligent data analysis methodolo-
gies, which could discover useful knowledge from data. The term KDD refers
to the overall process of knowledge discovery in databases. While some people
treat data mining as a synonym for KDD, some others view it as a particular
step in this process involving the application of specific algorithms for extract-
ing patterns (models) from data. The additional steps in the KDD process,
such as data preparation, data selection, data cleaning, incorporation of ap-
propriate prior knowledge, and proper interpretation of the results of mining,
ensures that useful knowledge is derived from the data.

Data mining tasks can be descriptive, (i.e., discovering interesting patterns
or relationships describing the data), and predictive (i.e., predicting or clas-
sifying the behavior of the model based on available data). In other words,
it is an interdisciplinary field with a general goal of predicting outcomes and
uncovering relationships in data [13]-[16]. It uses automated tools that (a)
employ sophisticated algorithms to discover mainly hidden patterns, associa-
tions, anomalies, and/or structure from large amounts of data stored in data
warehouses or other information repositories and (b) filter necessary informa-
tion from this big dataset.

The subject of Knowledge Discovery in Databases (KDD) has evolved,
and continues to evolve, from the intersection of research from such fields
as databases, machine learning, pattern recognition, statistics, information
theory, artificial intelligence, reasoning with uncertainties, knowledge acqui-
sition for expert systems, data visualization, machine discovery, and high-
performance computing. KDD systems incorporate theories, algorithms, and
methods from all these fields. Many successful applications have been reported
from varied sectors such as marketing, finance, banking, manufacturing, secu-
rity, medicine, multimedia, telecommunications, etc. Database theories and
tools provide the necessary infrastructure to store, access and manipulate
data. A good overview of KDD can be found in Refs. [17] and [18].

Data warehousing [2] refers to the current business trends in collecting
and cleaning transactional data and making them available for analysis and
decision support. Data mining works hand in hand with warehouse data.
Data warehousing is analogous to a mechanism that provides an enterprize
with a memory, while its mining provides the enterprize with intelligence.

KDD focuses on the overall process of knowledge discovery from large vol-
umes of data, including the storage and accessing of such data, scaling of
algorithms to massive datasets, interpretation and visualization of results,
and the modeling and support of the overall human machine interaction. Ef-
ficient storage of the data, and hence its structure, is very important for its
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Fig. 1.1 The KDD process.

representation and access. Knowledge from modern data compression tech-
nologies should be utilized to explore how this storage mechanism can further
be improved.

Data mining also overlaps with machine learning, statistics, artificial intel-
ligence, databases, and visualization. However, the stress is more on the

• scalability of the number of features and instances,

• algorithms and architectures (while the foundations of methods and for-
mulations are provided by statistics and machine learning), and

• automation for handling large volumes of heterogeneous data.

In the remaining part of this chapter we consider data mining from the
perspective of machine learning, pattern recognition, image processing, and
artificial intelligence. We begin by providing the basics of knowledge discovery
and data mining in Section 1.2. Sections 1.3-1.7 deal with brief introductions
to data compression, information retrieval, text mining, Web mining, and im-
age mining. Their applicability to multimedia data are also highlighted. This
is followed, in Sections 1.8-1.10, by a treatise on some of the major functions
of data mining like classification, clustering, and rule mining. String match-
ing, another important aspect of data mining with promising applications to
Bioinformatics, is described in Section 1.11. An introduction to the research
issues in Bioinformatics is provided in Section 1.12. The details on all these
topics are provided in subsequent chapters of this book. In Section 1.13 we
briefly present the concept of data warehousing. Section 1.14 highlights the
applications of data mining and some existing challenges to future research.
Finally, Section 1.15 concludes the chapter.

1.2 KNOWLEDGE DISCOVERY AND DATA MINING

Knowledge discovery in databases (KDD) is defined as the nontrivial process
of identifying valid, novel, potentially useful, and ultimately understandable
patterns in data [17, 19]. The overall process consists of turning low-level
data into high-level knowledge. The KDD process is outlined in Fig. 1.1. It
is interactive and iterative involving, more or less, the following steps [20]:
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1. Understanding the application domain: This includes relevant prior knowl-
edge and goals of the application.

2. Extracting the target dataset: This is nothing but selecting a dataset or
focusing on a subset of variables, using feature ranking and selection
techniques.

3. Data preprocessing: This is required to improve the quality of the actual
data for mining. This also increases the mining efficiency by reducing
the time required for mining the preprocessed data. Data preprocess-
ing involves data cleaning, data transformation, data integration, data
reduction or data compression for compact representation, etc.

(a) Data cleaning: It consists of some basic operations, such as normal-
ization, noise removal and handling of missing data, reduction of
redundancy, etc. Data from real-world sources are often erroneous,
incomplete, and inconsistent, perhaps due to operational error or
system implementation flaws. Such low-quality data needs to be
cleaned prior to data mining.

(b) Data integration: Integration plays an important role in KDD. This
operation includes integrating multiple, heterogeneous datasets gen-
erated from different sources.

(c) Data reduction and projection: This includes finding useful fea-
tures to represent the data (depending on the goal of the task) and
using dimensionality reduction, feature discretization, and feature
extraction (or transformation) methods. Application of the prin-
ciples of data compression can play an important role in data re-
duction and is a possible area of future development, particularly
in the area of knowledge discovery from multimedia dataset.

4. Data mining: Data mining constitutes one or more of the following
functions, namely, classification, regression, clustering, summarization,
image retrieval, discovering association rules and functional dependen-
cies, rule extraction, etc.

5. Interpretation: This includes interpreting the discovered patterns, as
well as the possible (low-dimensional) visualization of the extracted pat-
terns. Visualization is an important aid that increases understandability
from the perspective of humans. One can evaluate the mined patterns
automatically or semiautomatically to identify the truly interesting or
useful patterns for the user.

6. Using discovered knowledge: It includes incorporating this knowledge
into the performance system and taking actions based on the knowledge.

In other words, given huge volumes of heterogeneous data, the objective
is to efficiently extract meaningful patterns that can be of interest and hence
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useful to the user. The role of interestingness is to threshold or filter the large
number of discovered patterns, and report only those which may be of some
use. There are two approaches to designing a measure of interestingness of
a pattern, namely, objective and subjective. The former uses the structure
of the pattern and is generally quantitative. Often it fails to capture all the
complexities of the pattern discovery process. The subjective approach, on the
other hand, depends additionally on the user-who examines the pattern. Two
major reasons why a pattern is interesting from the subjective (user-oriented)
point of view are as follows [21].

• Unexpectedness: When it is "surprising" to the user, and this potentially
delivers new information to the user.

• Actionability. When the user can act on it to her/his advantage to fulfill
the goal.

Though both these concepts are important, it has often been observed that
actionability and unexpectedness are correlated. In literature, unexpectedness
is often defined in terms of the dissimilarity of a discovered pattern from a
predefined vocabulary provided by the user.

As an example, let us consider a database of student evaluations of different
courses offered at some university. This can be defined as EVALUATE (TERM,
YEAR, COURSE, SECTION, INSTRUCTOR, INSTRUCT-RATING, COURSE-RATING). We
describe two patterns that are interesting in terms of actionability and unex-
pectedness respectively. The pattern that Professor X is consistently getting
the overall INSTRUCT.RATING below overall COURSE-RATING can be of inter-
est to the chairperson, because this shows that Professor X has room for
improvement. If, on the other hand, in most of the course evaluations the
overall INSTRUCT.RATING is higher than COURSEJRATING and it turns out that
in most of Professor X's rating the overall INSTRUCTJIATING is lower than
COURSE-RATING, then such a pattern is unexpected and hence interesting.

Data mining is a step in the KDD process consisting of a particular enumer-
ation of patterns over the data, subject to some computational limitations.
The term pattern goes beyond its traditional sense to include models or struc-
tures in the data. Historical data are used to discover regularities and improve
future decisions [22]. The data can consist of (say) a collection of time series
descriptions that can be learned to predict later events in the series.

Data mining involves fitting models to or determining patterns from ob-
served data. The fitted models play the role of inferred knowledge. Deciding
whether the model reflects useful knowledge or not is a part of the overall
KDD process for which subjective human judgment is usually required. Typ-
ically, a data mining algorithm constitutes some combination of the following
three components.

• The model: The function of the model (e.g., classification, clustering)
and its representational form (e.g., linear discriminants, decision trees).
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A model contains parameters that are to be determined from data for
the chosen function using the particular representational form or tool.

• The preference criterion: A basis for preference of one model or set of
parameters over another, depending on the given data. The criterion
is usually some form of goodness-of-fit function of the model to the
data, perhaps tempered by a smoothing term to avoid over-fitting, or
generating a model with too many degrees of freedom to be constrained
by the given data.

• The search algorithm: The specification of an algorithm for finding par-
ticular models or patterns and parameters, given the data, model(s),
and a preference criterion.

A particular data mining algorithm is usually an instantiation of the model-
preference-search components. Some of the common model functions in cur-
rent data mining practice include [13, 14]:

1. Classification: This model function classifies a data item into one of
several predefined categorical classes.

2. Regression: The purpose of this model function is to map a data item
to a real-valued prediction variable.

3. Clustering: This function maps a data item into one of several clusters,
where clusters are natural groupings of data items based on similarity
metrics or probability density models.

4. Rule generation: Here one mines or generates rules from the data. Asso-
ciation rule mining refers to discovering association relationships among
different attributes. Dependency modeling corresponds to extracting
significant dependencies among variables.

5. Summarization or condensation: This function provides a compact de-
scription for a subset of data. Data compression may play a significant
role here, particularly for multimedia data, because of the advantage it
offers to compactly represent the data with a reduced number of bits,
thereby increasing the database storage bandwidth.

6. Sequence analysis: It models sequential patterns, like time-series analy-
sis, gene sequences, etc. The goal is to model the states of the process
generating the sequence, or to extract and report deviation and trends
over time.

The rapid growth of interest in data mining [22] is due to the (i) advance-
ment of the Internet technology and wide interest in multimedia applications
in this domain, (ii) falling cost of large storage devices and increasing ease
of collecting data over networks, (iii) sharing and distribution of data over
the network, along with adding of new data in existing data repository, (iv)
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development of robust and efficient machine learning algorithms to process
this data, (v) advancement of computer architecture and falling cost of com-
putational power, enabling use of computationally intensive methods for data
analysis, (vi) inadequate scaling of conventional querying or analysis meth-
ods, prompting the need for new ways of interaction, (vii) strong competitive
pressures from available commercial products, etc.

The notion of scalability relates to the efficient processing of large datasets,
while generating from them the best possible models. The most commonly
cited reason for scaling up is that increasing the size of the training set often
increases the accuracy of learned classification models. In many cases, the
degradation in accuracy when learning from smaller samples stems from over-
fitting, presence of noise, and existence of large number of features. Again,
scaling up to very large datasets implies that fast learning algorithms must
be developed. Finally, the goal of the learning (say, classification accuracy)
must not be substantially sacrificed by a scaling algorithm. The three main
approaches to scaling up include [23]

• designing a fast algorithm: improving computational complexity, opti-
mizing the search and representation, finding approximate solutions to
the computationally complex (NP complete or NP hard) problems, or
taking advantage of the task's inherent parallelism;

• partitioning the data: dividing the data into subsets (based on instances
or features), learning from one or more of the selected subsets, and
possibly combining the results; and

• using a relational representation: addresses data that cannot feasibly be
treated as a single flat file.

Some examples of mined or discovered patterns include

1. Classification:

(a) People with age less than 25 and salary > 40K drive sports cars.

(b) Set of images that contain a car as an object.

2. Association rules:

(a) 80% of the images containing a car as an object also contain a blue
sky.

(b) 98% of people who purchase diapers also buy baby food.

3. Similar time sequences:

(a) Stocks of companies A and B perform similarly.

(b) Sale of furniture increases with the improvement of real estate busi-
ness.
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4. Outlier detection:

(a) Residential customers for a telecom company, with businesses at
home.

(b) Digital radiographs of lungs, with suspicious spots.

1.3 DATA COMPRESSION

With growing demands of various applications, storage requirements of digital
data are growing explosively. Some examples, demonstrating this, are given
below.

• A high-quality audio signal requires approximately 1.5 megabits per
second for digital representation and storage.

• A digitized 14 x 17 square-inch radiograph, scanned at 70 /mi, occupies
nearly 45 megabytes of storage.

• A television-quality low-resolution color video of 30 frames per second,
with each frame containing 640 x 480 pixels (24 bits per color pixel),
needs more than 210 megabits per second of storage. As a result, a
digitized one hour color movie would require approximately 95 gigabytes
of storage.

• The storage requirement for the upcoming High-Definition-Television
(HDTV)-quality video of resolution 1280 x 720 at 60 frames per second
is many-fold. A digitized one-hour color movie of HDTV-quality video
will require approximately 560 gigabytes of storage.

• A small document collection in electronic form in a digital library system
may easily require to store several billion characters.

• The total amount of data spread over Internet sites is mind-boggling.

Although the cost of storage has decreased drastically over the past decade
due to significant advancement in the microelectronics and storage technology,
the requirement of data storage and data processing applications is growing
explosively to outpace this achievement. Hence data compression continues
to be a challenging area of research and development in both academia and
industry, particularly in the context of large databases.

Interestingly enough, most of the datatypes for practical applications such
as still image, video, voice, and text generally contain a significant amount
of superfluous and redundant information in their canonical representation.
Data redundancy may appear in different forms in the digital representation
of different categories of datatypes. A few examples are as follows.
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1. In English text files, common words (e.g., "is", "are", "the") or simi-
lar patterns of character strings (e.g., lze\ lth\ iing'1} are usually used
repeatedly. It is also observed that the characters in an English text
occur in a well-documented distribution, with letter "e" and "space"
being the most popular.

2. In numeric data files, often we observe runs of similar numbers or pre-
dictable interdependency amongst the numbers.

3. The neighboring pixels in a typical image are highly correlated to each
other, with the pixels in a smooth region of an image having similar
values.

4. Two consecutive frames in a video are often mostly identical when mo-
tion in the scene is slow.

5. Some audio data beyond the human audible frequency range are useless
for all practical purposes.

Data compression is the technique to reduce the redundancies in data repre-
sentation in order to decrease data storage requirements and, hence, commu-
nication costs when transmitted through a communication network [24, 25].
Reducing the storage requirement is equivalent to increasing the capacity of
the storage medium. If the compressed data are properly indexed, it may
improve the performance of mining data in the compressed large database as
well. This is particularly useful when interactivity is involved with a data
mining system. Thus the development of efficient compression techniques,
particularly suitable for data mining, will continue to be a design challenge
for advanced database management systems and interactive multimedia ap-
plications.

Depending upon the application criteria, data compression techniques can
be classified as lossless and lossy. In lossless methods we compress the data in
such a way that the decompressed data can be an exact replica of the original
data. Lossless compression techniques are applied to compress text, numeric,
or character strings in a database - typically, medical data, etc. On the other
hand, there are application areas where we can compromise with the accuracy
of the decompressed data and can, therefore, afford to lose some information.
For example, typical image, video, and audio compression techniques are lossy,
since the approximation of the original data during reconstruction is good
enough for human perception.

In our view, data compression is a field that has so far been neglected
by the data mining community. The basic principle of data compression
is to reduce the redundancies in data representation, in order to generate
a shorter representation for the data to conserve data storage. In earlier
discussions, we emphasized that data reduction is an important preprocessing
task in data mining. Need for reduced representation of data is crucial for
the success of very large multimedia database applications and the associated



12 INTRODUCTION TO DATA MINING

economical usage of data storage. Multimedia databases are typically much
larger than, say, business or financial data, simply because an attribute itself
in a multimedia database could be a high-resolution digital image. Hence
storage and subsequent access of thousands of high-resolution images, which
are possibly interspersed with other datatypes as attributes, is a challenge.
Data compression offers advantages in the storage management of such huge
data. Although data compression has been recognized as a potential area
for data reduction in literature [13], not much work has been reported so far
on how the data compression techniques can be integrated in a data mining
system.

Data compression can also play an important role in data condensation.
An approach for dealing with the intractable problem of learning from huge
databases is to select a small subset of data as representatives for learning.
Large data can be viewed at varying degrees of detail in different regions of
the feature space, thereby providing adequate importance depending on the
underlying probability density [26]. However, these condensation techniques
are useful only when the structure of data is well-organized. Multimedia
data, being not so well-structured in its raw form, leads to a big bottleneck
in the application of existing data mining principles. In order to avoid this
problem, one approach could be to store some predetermined feature set of
the multimedia data as an index at the header of the compressed file, and
subsequently use this condensed information for the discovery of information
or data mining.

We believe that integration of data compression principles and techniques
in data mining systems will yield promising results, particularly in the age of
multimedia information and their growing usage in the Internet. Soon there
will arise the need to automatically discover or access information from such
multimedia data domains, in place of well-organized business and financial
data only. Keeping this goal in mind, we intended to devote significant dis-
cussions on data compression techniques and their principles in multimedia
data domain involving text, numeric and non-numeric data, images, etc.

We have elaborated on the fundamentals of data compression and image
compression principles and some popular algorithms in Chapter 3. Then
we have described, in Chapter 9, how some data compression principles can
improve the efficiency of information retrieval particularly suitable for multi-
media data mining.

1.4 INFORMATION RETRIEVAL

Users approach large information spaces like the Web with different motives,
namely, to (i) search for a specific piece of information or topic, (ii) gain
familiarity with, or an overview of, some general topic or domain, and (iii)
locate something that might be of interest, without a clear prior notion of
what "interesting" should look like. The field of information retrieval devel-
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ops methods that focus on the first situation, whereas the latter motives are
mainly addressed in approaches dealing with exploration and visualization of
the data.

Information retrieval [28] uses the Web (and digital libraries) to access
multimedia information repositories consisting of mixed media data. The in-
formation retrieved can be text as well as image document, or a mixture of
both. Hence it encompasses both text and image mining. Information re-
trieval automatically entails some amount of summarization or compression,
along with retrieval based on content. Given a user query, the information
system has to retrieve the documents which are related to that query. The
potentially large size of the document collection implies that specialized in-
dexing techniques must be used if efficient retrieval is to be achieved. This
calls for proper indexing and searching, involving pattern or string matching.

With the explosive growth of the amount of information over the Web
and the associated proliferation of the number of users around the world, the
difficulty in assisting users in finding the best and most recent information
has increased exponentially. The existing problems can be categorized as the
absence of

• filtering: a user looking for some topic on the Internet receives too much
information,

• ranking of retrieved documents: the system provides no qualitative dis-
tinction between the documents,

• support of relevance feedback: the user cannot report her/his subjective
evaluation of the relevance of the document,

• personalization: there is a need of personal systems that serve the spe-
cific interests of the user and build user profile,

• adaptation: the system should notice when the user changes her/his
interests.

Retrieval can be efficient in terms of both (a) a high recall from the Inter-
net and (b) a fast response time at the expense of a poor precision. Recall is
the percentage of relevant documents that are retrieved, while precision refers
to the percentage of documents retrieved that are considered as relevant [29].
These are some of the factors that are considered when evaluating the rele-
vance feedback provided by a user, which can again be explicit or implicit. An
implicit feedback entails features such as the time spent in browsing a Web
page, the number of mouse-clicks made therein, whether the page is printed
or bookmarked, etc. Some of the recent generations of search engines involve
Meta-search engines (like Harvester, MetaCrawler) and intelligent Software
Agent technologies. The intelligent agent approach [30, 31] is recently gaining
attention in the area of building an appropriate user interface for the Web.

Therefore, four main constituents can be identified in the process of infor-
mation retrieval from the Internet. They are
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1. Indexing: generation of document representation.

2. Querying: expression of user preferences through natural language or
terms connected by logical operators.

3. Evaluation: performance of matching between user query and document
representation.

4. User profile construction: storage of terms representing user preferences,
especially to enhance the system retrieval during future accesses by the
user.

1.5 TEXT MINING

Text is practically one of the most commonly used multimedia datatypes in
day-to-day use. Text is the natural choice for formal exchange of information
by common people through electronic mail, Internet chat, World Wide Web,
digital libraries, electronic publications, and technical reports, to name a few.
Moreover, huge volumes of text data and information exist in the so-called
"gray literature" and they are not easily available to common users outside
the normal book-selling channels. The gray literature includes technical re-
ports, research reports, theses and dissertations, trade and business literature,
conference and journal papers, government reports, and so on [32]. Gray lit-
erature is typically stored in text (or document) databases. The wealth of
information embedded in the huge volumes of text (or document) databases
distributed all over is enormous, and such databases are growing exponentially
with the revolution of current Internet and information technology. The popu-
lar data mining algorithms have been developed to extract information mainly
from well-structured classical databases, such as relational, transactional, pro-
cessed warehouse data, etc. Multimedia data are not so structured and often
less formal. Most of the textual data spread all over the world are not very
formally structured either. The structure of textual data formation and the
underlying syntax vary from one language to another language (both machine
and human), one culture to another, and possibly user to user. Text mining
can be classified as the special data mining techniques particularly suitable
for knowledge and information discovery from textual data.

Automatic understanding of the content of textual data, and hence the
extraction of knowledge from it, is a long-standing challenge in artificial in-
telligence. There were efforts to develop models and retrieval techniques for
semistructured data from the database community. The information retrieval
community developed techniques for indexing and searching unstructured text
documents. However, these traditional techniques are not sufficient for knowl-
edge discovery and mining of the ever-increasing volume of textual databases.

Although retrieval of text-based information was traditionally considered
to be a branch of study in information retrieval only, text mining is currently
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emerging as an area of interest of its own. This became very prominent with
the development of search engines used in the World Wide Web, to search
and retrieve information from the Internet. In order to develop efficient text
mining techniques for search and access of textual information, it is important
to take advantage of the principles behind classical string matching techniques
for pattern search in text or string of characters, in addition to traditional
data mining principles. We describe some of the classical string matching
algorithms and their applications in Chapter 4.

In today's data processing environment, most of the text data is stored
in compressed form. Hence access of text information in the compressed
domain will become a challenge in the near future. There is practically no
remarkable effort in this direction in the research community. In order to
make progress in such efforts, we need to understand the principles behind
the text compression methods and develop underlying text mining techniques
exploiting these. Usually, classical text compression algorithms, such as the
Lempel-Ziv family of algorithms, are used to compress text databases. We
deal with some of these algorithms and their working principles in greater
detail in Chapter 3.

Other established mathematical principles for data reduction have also been
applied in text mining to improve the efficiency of these systems. One such
technique is the application of principal component analysis based on the
matrix theory of singular value decomposition. Use of latent semantic analy-
sis based on the principal component analysis and some other text analysis
schemes for text mining have been discussed in great detail in Section 9.2.

1.6 WEB MINING

Presently an enormous wealth of information is available on the Web. The
objective is to mine interesting nuggets of information, like which airline has
the cheapest flights in December, or search for an old friend, etc. Internet
is definitely the largest multimedia data depository or library that ever ex-
isted. It is the most disorganized library as well. Hence mining the Web is a
challenge.

The Web is a huge collection of documents that comprises (i) semistruc-
tured (HTML, XML) information, (ii) hyper-link information, and (iii) access
and usage information and is (iv) dynamic; that is, new pages are constantly
being generated. The Web has made cheaper the accessibility of a wider au-
dience to various sources of information. The advances in all kinds of digital
communication has provided greater access to networks. It has also created
free access to a large publishing medium. These factors have allowed people
to use the Web and modern digital libraries as a highly interactive medium.
However, present-day search engines are plagued by several problems like the
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• abundance problem, as 99% of the information is of no interest to 99%
of the people,

• limited coverage of the Web, as Internet sources are hidden behind search
interfaces,

• limited query interface, based on keyword-oriented search, and

• limited customization to individual users.

Web mining [27] refers to the use of data mining techniques to automat-
ically retrieve, extract, and evaluate (generalize or analyze) information for
knowledge discovery from Web documents and services. Considering the Web
as a huge repository of distributed hypertext, the results from text mining
have great influence in Web mining and information retrieval. Web data are
typically unlabeled, distributed, heterogeneous, semistructured, time-varying,
and high-dimensional. Hence some sort of human interface is needed to han-
dle context-sensitive and imprecise queries and provide for summarization,
deduction, personalization, and learning.

The major components of Web mining include

• information retrieval,

• information extraction,

• generalization, and

• analysis.

Information retrieval, as mentioned in Section 1.4, refers to the automatic
retrieval of relevant documents, using document indexing and search engines.
Information extraction helps identify document fragments that constitute the
semantic core of the Web. Generalization relates to aspects from pattern
recognition or machine learning, and it utilizes clustering and association rule
mining. Analysis corresponds to the extraction, interpretation, validation,
and visualization of the knowledge obtained from the Web.

Different aspects of Web mining have been discussed in Section 9.5.

1.7 IMAGE MINING

Image is another important class of multimedia datatypes. The World Wide
Web is presently regarded as the largest global multimedia data repository, en-
compassing different types of images in addition to other multimedia datatypes.
As a matter of fact, much of the information communicated in the real-world
is in the form of images; accordingly, digital pictures play a pervasive role in
the World Wide Web for visual communication. Image databases are typically
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very large in size. We have witnessed an exponential growth in the genera-
tion and storage of digital images in different forms, because of the advent
of electronic sensors (like CMOS or CCD) and image capture devices such as
digital cameras, camcorders, scanners, etc.

There has been a lot of progress in the development of text-based search
engines for the World Wide Web. However, search engines based on other
multimedia datatypes do not exist. To make the data mining technology suc-
cessful, it is very important to develop search engines in other multimedia
datatypes, especially for image datatypes. Mining of data in the imagery do-
main is a challenge. Image mining [33] deals with the extraction of implicit
knowledge, image data relationship, or other patterns not explicitly stored
in the images. It is more than just an extension of data mining to the im-
age domain. Image mining is an interdisciplinary endeavor that draws upon
expertise in computer vision, pattern recognition, image processing, image
retrieval, data mining, machine learning, database, artificial intelligence, and
possibly compression.

Unlike low-level computer vision and image processing, the focus of image
mining is in the extraction of patterns from a large collection of images. It,
however, includes content-based retrieval as one of its functions. While cur-
rent content-based image retrieval systems can handle queries about image
contents based on one or more related image features such as color, shape,
and other spatial information, the ultimate technology remains an impor-
tant challenge. While data mining can involve absolute numeric values in
relational databases, the images are better represented by relative values of
pixels. Moreover, image mining inherently deals with spatial information and
often involves multiple interpretations for the same visual pattern. Hence the
mining algorithms here need to be subtly different than in traditional data
mining.

A discovered image pattern also needs to be suitably represented to the
user, often involving feature selection to improve visualization. The informa-
tion representation framework for an image can be at different levels, namely,
pixel, object, semantic concept, and pattern or knowledge levels. Conven-
tional image mining techniques include object recognition, image retrieval,
image indexing, image classification and clustering, and association rule min-
ing. Intelligently classifying an image by its content is an important way to
mine valuable information from a large image collection [34].

Since the storage and communication bandwidth required for image data is
pervasive, there has been a great deal of activity in the international standard
committees to develop standards for image compression. It is not practical to
store the digital images in uncompressed or raw data form. Image compres-
sion standards aid in the seamless distribution and retrieval of compressed
images from an image repository. Searching images and discovering knowl-
edge directly from compressed image databases has not been explored enough.
However, it is obvious that image mining in compressed domain will become
a challenge in the near future, with the explosive growth of the image data
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depository distributed all over in the World Wide Web. Hence it is crucial
to understand the principles behind image compression and its standards, in
order to make significant progress to achieve this goal.

We discuss the principles of multimedia data compression, including that
for image datatypes, in Chapter 3. Different aspects of image mining are
described in Section 9.3.

1.8 CLASSIFICATION

Classification is also described as supervised learning [35]. Let there be a
database of tuples, each assigned a class label. The objective is to develop a
model or profile for each class. An example of a profile with good credit is
25 < age < 40 and income > 40K or married = "yes". Sample applications
for classification include

• Signature identification in banking or sensitive document handling
(match, no match).

• Digital fingerprint identification in security applications
(match, no match).

• Credit card approval depending on customer background and financial
credibility (good, bad).

• Bank location considering customer quality and business possibilities
(good, fair, poor).

• Identification of tanks from a set of images (friendly, enemy).

• Treatment effectiveness of a drug in the presence of a set of disease
symptoms (good, fair, poor).

• Detection of suspicious cells in a digital image of blood samples
(yes, no).

The goal is to predict the class Ci = f(x\,..., £„), where x\,..., xn are
the input attributes. The input to the classification algorithm is, typically, a
dataset of training records with several attributes. There is one distinguished
attribute called the dependent attribute. The remaining predictor attributes
can be numerical or categorical in nature. A numerical attribute has continu-
ous, quantitative values. A categorical attribute, on the other hand, takes up
discrete, symbolic values that can also be class labels or categories. If the de-
pendent attribute is categorical, the problem is called classification with this
attribute being termed the class label. However, if the dependent attribute
is numerical, the problem is termed regression. The goal of classification and
regression is to build a concise model of the distribution of the dependent
attribute in terms of the predictor attributes. The resulting model is used to
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assign values to a database of testing records, where the values of the pre-
dictor attributes are known but the dependent attribute is to be determined.
Classification methods can be categorized as follows.

1. Decision trees [36], which divide a decision space into piecewise constant
regions. Typically, an information theoretic measure is used for assessing
the discriminatory power of the attributes at each level of the tree.

2. Probabilistic or generative models, which calculate probabilities for hy-
potheses based on Bayes' theorem [35].

3. Nearest-neighbor classifiers, which compute minimum distance from in-
stances or prototypes [35].

4. Regression, which can be linear or polynomial, of the form axi+bx^+c =
Ci [37].

5. Neural networks [38], which partition by nonlinear boundaries. These
incorporate learning, in a data-rich environment, such that all informa-
tion is encoded in a distributed fashion among the connection weights.

Neural networks are introduced in Section 2.2.3, as a major soft computing
tool. We have devoted the whole of Chapter 5 to the principles and techniques
for classification.

1.9 CLUSTERING

A cluster is a collection of data objects which are similar to one another within
the same cluster but dissimilar to the objects in other clusters. Cluster anal-
ysis refers to the grouping of a set of data objects into clusters. Clustering
is also called unsupervised classification, where no predefined classes are as-
signed [35].

Some general applications of clustering include

• Pattern recognition.

• Spatial data analysis: creating thematic maps in geographic information
systems (GIS) by clustering feature spaces, and detecting spatial clusters
and explaining them in spatial data mining.

• Image processing: segmenting for object-background identification.

• Multimedia computing: finding the cluster of images containing flowers
of similar color and shape from a multimedia database.

• Medical analysis: detecting abnormal growth from MRI.

• Bioinformatics: determining clusters of signatures from a gene database.
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• Biometrics: creating clusters of facial images with similar fiduciary
points.

• Economic science: undertaking market research.

• WWW: clustering Weblog data to discover groups of similar access pat-
terns.

A good clustering method will produce high-quality clusters with high in-
traclass similarity and low interclass similarity. The quality of a clustering
result depends on both (a) the similarity measure used by the method and
(b) its implementation. It is measured by the ability of the system to discover
some or all of the hidden patterns.

Clustering approaches can be broadly categorized as

1. Partitional: Create an initial partition and then use an iterative control
strategy to optimize an objective.

2. Hierarchical: Create a hierarchical decomposition (dendogram) of the
set of data (or objects) using some termination criterion.

3. Density-based: Use connectivity and density functions.

4. Grid-based: Create multiple-level granular structure, by quantizing the
feature space in terms of finite cells.

Clustering, when used for data mining, is required to be (i) scalable, (ii)
able to deal with different types of attributes, (iii) able to discover clusters
with arbitrary shape, (iv) having minimal requirements for domain knowl-
edge to determine input parameters, (v) able to deal with noise and outliers,
(vi) insensitive to order of input records, (vii) of high dimensionality, and
(viii) interpretable and usable. Further details on clustering are provided in
Chapter 6.

1.10 RULE MINING

Rule mining refers to the discovery of the relationship(s) between the at-
tributes of a dataset, say, a set of transactions. Market basket data consist of
a set of items bought together by customers, one such set of items being called
a transaction. A lot of work has been done in recent years to find associations
among items in large groups of transactions [39, 40].

A rule is normally expressed in the form X =>• Y, where X and Y are sets of
attributes of the dataset. This implies that transactions which contain X also
contain Y. A rule is normally expressed as IF < some-conditions .satisfied >
THEN < predict .values-j'or. some-other-attributes >. So the association
X =>• Y is expressed as IF X THEN Y. A sample rule could be of the form



STRING MATCHING 21

IF (salary > 12000) AND (unpaid-loan = "no")
THEN (select-for-loan = "yes").

Rule mining can be categorized as

1. Association rule mining: An expression of the form X => Y, where X
and Y are subsets of all attributes, and the implication holds with a
confidence > c, where c is a user-defined threshold. This implies IF X
THEN Y, with at least c confidence.

2. Classification rule mining: A supervised process uses a training dataset
to generate the rules. The objective is to predict a predefined class
or goal attribute, which can never appear in the antecedent part of a
rule. The generated rules are used to predict the class attribute of an
unknown test dataset.

3. Dependency rule modeling: This is also a supervised process, with the
goal attribute being chosen from a predefined set of attributes. While
non-goal attributes can occur only in the antecedent part of a rule, the
goal attributes can appear in either its consequent or antecedent parts.

Let us consider an example from medical decision-making. Often data may
be missing for various reasons; for example, some examinations can be risky
for the patient or contraindications can exist, an urgent diagnostic decision
may need to be made and some very informative but prolonged test results
may have to be excluded from the feature set, or appropriate technical equip-
ment may not be available. In such cases, the system can query the user
for additional information only when it is particularly necessary to infer a
decision. Again, one realizes that the final responsibility for any diagnos-
tic decision always has to be accepted by the medical practitioner. So the
physician may want to verify the justification behind the decision reached,
based on personal expertise. This requires the system to be able to explain
its mode of reasoning for any inferred decision or recommendation, preferably
in classification rule form, to convince the user that its reasoning is correct.

Important association rule mining techniques have been considered in detail
in Chapter 7. Generation of classification rules, in a modular framework, have
been described in Chapter 8.

1.11 STRING MATCHING

String matching is a very important area of research for successful develop-
ment of data mining systems, particularly for text databases and in mining of
data through the Internet by a text-based search engine. In this section, we
briefly introduce the string matching problem [24].

Let P = a\a<2 ... am and T = b\b<2 ... bn denote finite strings (or sequences)
of characters (or symbols) over a finite alphabet E, where m, n are positive
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integers greater than 0. In its simplest form, the pattern or string match-
ing problem consists of searching the text T to find the occurrence(s) of the
pattern P in T (m < n).

Several variants of the basic problem can be considered. The pattern may
consist of a finite set of sequences P = {P1, P2,..., Pfc}, where each P* is a
pattern from the same alphabet and the problem is to search for occurrence(s)
of any one of the members of the set in the text. The patterns may be fully
or partially specified.

• Let $ denote a "don't care" or "wild card" character; then the pattern
A$B denotes a set of patterns AAB, ABB, ACB, etc. - that is, any
pattern that begins with A, ends with B, and has a single unspecified
character in the middle. The character $ is called a "fixed length don't
care" (FLDC) character and may appear at any place in the pattern.

• A special character 0 is used to denote the infinite set of patterns
$ - {$, $$, $$$,...} and is called a "variable length don't care" (VLDC)
character.

Patterns containing special characters $ or 0 are called partially specified;
otherwise, they are termed fully specified.

The string matching problem has been extensively studied in the litera-
ture. Several linear time algorithms for the exact pattern matching problem
(involving fully specified patterns) have been developed by researchers [41]-
[43].

No linear time algorithm is yet known for the string matching problem with
a partially specified pattern. The best known result for pattern matching us-
ing a pattern consisting of wild card characters is by Fischer and Patterson [44]
with complexity O(nlog2mloglogmlogc), where c is the size of the alpha-
bet. Several two-dimensional exact pattern matching algorithms have been
proposed in Refs. [45]-[47].

There are other variation of the string matching when the pattern is not
fully specified. For example, finding the occurrences of similar patterns with
small differences in the text. Let us consider trying to find the occurrences of
patterns similar to (say) "birth," with maximum difference in two character
positions in the text. Here the patterns "birth," "broth," "booth," "worth,"
"dirty," etc., will be considered to be valid occurrence in the text. All these
above variations of the string matching problem is usually known as Approx-
imate String Matching in the literature.

The string (or pattern) matching problem becomes even more interest-
ing when one attempts to directly match a pattern in a compressed text or
database. String matching finds widespread applications in diverse areas such
as text editing, text search, information retrieval, text mining, Web mining,
Bioinformatics, etc. String matching is a very essential component in text
analysis and retrieval in order to automatically extract the words, keywords,
and set of terms in a document, and also in query processing when used in
text mining.



BIOINFORMATICS 23

We have devoted Chapter 4 to string matching, encompassing a detailed
description of the classical algorithms along with a number of examples for
each of them.

1.12 BIOINFORMATICS

A gene is a fundamental constituent of any living organism. Sequence of
genes in a human body represent the signature(s) of the person. The genes
are portions of the deoxyribonucleic acid, or DNA for short. J. D. Watson and
F. H. Crick proposed a structure of DNA in 1953, consisting of two strands or
chains. Each of these chains is composed of phosphate and deoxyribose sugar
molecules joined together by covalent bonds. A nitrogenous base is attached to
each sugar molecule. There are four bases: adenine [A], cytosine [C], guanine
[G], and thymine [T]. From information theoretic perspective, the DNA can
be considered as a string or sequence of symbols. Each symbol is one of the
four above bases A, C, G, or T.

In the human body there are approximately 3 billion such base pairs. The
whole stretch of the DNA is called the genome of an organism. Obviously, such
a long stretch of DNA cannot be sequenced all at once. Mapping, search, and
analysis of patterns in such long sequences can be combinatorially explosive
and can be impractical to process even in today's powerful digital computers.

Typically, a DNA sequence may be 40,000-100,000 base pairs long. In
practice, such a long stretch of DNA is first broken up into 400-2000 small
fragments. Each such small fragment typically consists of approximately 1000
base pairs. These fragments are sequenced experimentally, and then reassem-
bled together to reconstruct the original DNA sequence. Genes are encoded
in these fragments of DNA. Understanding what parts of the genome encode
which genes is a main area of study in computational molecular biology or
Bioinformatics [7, 48]. The results of string matching algorithms and their
derivatives have been applied in search, analysis and sequencing of DNA, and
other developments in Bioinformatics.

Microarray experiments are done to produce gene expression patterns, that
provide dynamic information about cell function. The huge volume of such
data, and their high dimensions, make gene expression data to be suitable
candidates for the application of data mining functions like clustering, visu-
alization, and string matching. Visualization is used to transform these high-
dimensional data to lower-dimensional, human understandable form. This
aids subsequent useful analysis, leading to efficient knowledge discovery. Mi-
croarray technologies are utilized to evaluate the level of expression of thou-
sands of genes, with applications in colon, breast, and blood cancer treatment
[48].

Proteins are made up of polypeptide chains of amino acids, which consist
of the DNA as the building block. General principles of protein structure,
stability, and folding kinetics are being explored in Bioinformatics, using lat-
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tice models. These models represent protein chains involving some param-
eters, and they allow complete explorations of conformational and sequence
spaces. Interactions among spatially neighboring amino acids, during folding,
are controlled by such factors as bond length, bond angle, electrostatic forces,
hydrogen bonding, hydrophobicity, entropy, etc. [49]. The determination of
an optimal conformation of a three-dimensional protein structure constitutes
protein folding. This has wide-ranging applications in pharmacogenomics, and
more specifically to drug design.

The different aspects of the applicability of data mining to Bioinformatics
are described in detail in Chapter 10.

1.13 DATA WAREHOUSING

A data warehouse is a decision support database that is maintained sepa-
rately from the organizations operational database. It supports information
processing by providing a solid platform of consolidated, historical data for
analysis. A data warehouse [13] is a subject-oriented, integrated, time-variant,
and nonvolatile collection of data in support of managements decision-making
process. Data warehousing deals with the process of constructing and using
data warehouses.

Database systems are of two types, namely, on-line transaction processing
systems, like OLTP; and decision support systems, like warehouses, on-line an-
alytical processing (OLAP), and mining. Historical data from OLTP systems
form decision support systems, the goal being to learn from past experiences.
While OLTP involves many short, update-intensive commands, a decision
support system requires fewer but complex queries. OLTP is a major task of
traditional relational database management systems. It involves day-to-day
operations like purchasing, inventory, banking, manufacturing, payroll, reg-
istration, accounting, etc. OLAP, on the other hand, is a primary task of a
data warehouse system. It concentrates on data analysis and decision making,
based on the content of the data warehouse.

A data warehouse is subject-oriented, being organized around major sub-
jects such as customer, product, and sales. It is constructed by integrating
multiple, heterogeneous data sources, like relational databases, flat files, and
on-line transaction records, in a uniform format. Data cleaning and data in-
tegration techniques are applied to ensure consistency in naming conventions,
encoding structures, attribute measures, etc., among different data sources.

While an operational database is concerned with current value data, the
data warehouse provides information from a historical perspective (e.g., past
5-10 years). Every key structure in the data warehouse contains an element
of time, explicitly or implicitly, although the key of operational data may or
may not contain the time element. Data warehouse constitutes a physically
separate store of data, transformed from the operational environment. Op-
erational update of data does not occur in the data warehouse environment.
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It does not require transaction processing, recovery, and concurrency control
mechanisms. It requires only two operations, namely, initial loading of data
and its access.

Traditional heterogeneous databases build wrappers or mediators on top
of the databases and adopt a query-driven approach. When a query is posed
to a client site, a meta-dictionary is used to translate the query into a form
appropriate for individual heterogeneous sites involved, and the results are
integrated into a global answer set. This involves complex information filter-
ing and a competition for resources. Data warehouses, on the other hand,
are high-performance systems providing a multidimensional view for complex
OLAP queries. Information from heterogeneous sources is integrated in ad-
vance, and it is stored in warehouses for direct query and analysis.

OLAP helps provide fast, interactive answers to large aggregate queries at
multiple levels of abstraction. A data cube allows such multidimensional data
to be effectively modeled and viewed in the n dimensions. Typical OLAP
operations include

1. Roll up (drill-up): Summarize data by climbing up hierarchy or by di-
mension reduction.

2. Drill down (roll down): Reverse of roll-up from higher level summary to
lower level summary or detailed data, or introducing new dimensions.

3. Slice and dice: Project and select.

4. Pivot (rotate): Reorient the cube, transform from 3D to a series of 2£>
planes, and provide better visualization.

5. Drill across: Involving more than one fact table.

6. Drill through: From the bottom level of the cube to its back-end rela-
tional tables (using structured query languages SQL).

1.14 APPLICATIONS AND CHALLENGES

Some of the important issues in data mining include the identification of appli-
cations for existing techniques, and developing new techniques for traditional
as well as new application domains, like the Web, E-commerce, and Bioinfor-
matics. Some of the existing practical uses of data mining exist in (i) tracking
fraud, (ii) tracking game strategy, (iii) target marketing, (iv) holding on to
good customers, and (v) weeding out bad customers, to name a few. There
are many other areas we can envisage, where data mining can be applied.
Some of these areas are as follows.

• Medicine: Determine disease outcome and effectiveness of treatments,
by analyzing patient disease history to find some relationship between
diseases.
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• Molecular or pharmaceutical: Identify new drugs.

• Security: Face recognition, identification, biometrics, etc.

• Judiciary: Search and access of historical data on judgement of similar
cases.

• Biometrics: Positive identification of a person from a large image, fin-
gerprint or voice database.

• Multimedia retrieval: Search and identification of image, video, voice,
and text from multimedia database, which may be compressed.

• Scientific data analysis: Identify new galaxies by searching for subclus-
ters.

• Web site or Web store design, and promotion: Find affinity of visitors
to Web pages, followed by subsequent layout modification.

• Marketing: Help marketers discover distinct groups in their customer
bases, and then use this knowledge to develop targeted marketing pro-
grams.

• Land use: Identify areas of similar land use in an earth observation
database.

• Insurance: Identify groups of motor insurance policy holders with a high
average claim cost.

• City-planning: Identify groups of houses according to their house type,
value, and geographical location.

• Geological studies: Infer that observed earthquake epicenters are likely
to be clustered along continental faults.

The first generation of data mining algorithms has been demonstrated to
be of significant value across a variety of real-world applications. But these
work best for problems involving a large set of data collected into a single
database, where the data are described by numeric or symbolic features. Here
the data invariably do not contain text and image features interleaved with
these features, and they are carefully and cleanly collected with a particular
decision-making task in mind.

Development of new generation algorithms is expected to encompass more
diverse sources and types of data that will support mixed-initiative data min-
ing, where human experts collaborate with the computer to form hypotheses
and test them. The main challenges to the data mining procedure, to be
considered for future research, involve the following.

1. Massive datasets and high dimensionality. Huge datasets create combi-
natorially explosive search space for model induction, and they increase



the chances that a data mining algorithm will find spurious patterns that
are not generally valid. Possible solutions include robust and efficient
algorithms, sampling approximation methods, and parallel processing.
Scaling up of existing techniques is needed - for example, in the cases
of classification, clustering, and rule mining.

2. User interaction and prior knowledge. Data mining is inherently an
interactive and iterative process. Users may interact at various stages,
and domain knowledge may be used either in the form of a high-level
specification of the model or at a more detailed level. Visualization
of the extracted model is also desirable for better user interaction at
different levels.

3. Over-fitting and assessing the statistical significance. Datasets used for
mining are usually huge and available from distributed sources. As a
result, often the presence of spurious data points leads to over-fitting of
the models. Regularization and re-sampling methodologies need to be
emphasized for model design.

4. Understandability of patterns. It is necessary to make the discoveries
more understandable to humans. Possible solutions include rule struc-
turing, natural language representation, and the visualization of data
and knowledge.

5. Nonstandard and incomplete data. The data can be missing and/or
noisy. These need to be handled appropriately.

6. Mixed media data. Learning from data that are represented by a com-
bination of various media, like (say) numeric, symbolic, images, and
text.

7. Management of changing data and knowledge. Rapidly changing data,
in a database that is modified or deleted or augmented, may make previ-
ously discovered patterns invalid. Possible solutions include incremental
methods for updating the patterns.

8. Integration. Data mining tools are often only a part of the entire
decision-making system. It is desirable that they integrate smoothly,
both with the database and the final decision-making procedure.

9. Compression. Storage of large multimedia databases is often required
to be in compressed form. Hence the development of compression tech-
nology, particularly suitable for data mining, is required. It would be
even more beneficial if data can be accessed in the compressed domain
[24].

10. Human Perceptual aspects for data mining. Many multimedia data min-
ing systems are intended to be used by humans. So it is a pragmatic



28 INTRODUCTION TO DATA MINING

approach to design multimedia systems and underlying data mining
techniques based on the needs and capabilities of the human percep-
tual system. The ultimate consumer of most perceptual information is
the 'Human Perceptual System?. Primarily, the Human Perceptual Sys-
tem consists of the 'Human Visual System1 and the 'Human Auditory
System'. How these systems work synergistically is still not completely
understood and is a subject of ongoing research. We also need to focus
some attention in this direction so that their underlying principles can
be adopted while developing data mining techniques, in order to make
these more amenable and natural to the human customer.

11. Distributed database. Interest in the development of data mining sys-
tems in a distributed environment will continue to grow. In today's
networked society, data are not stored or archived in a single storage
system unit. Problems arise while handling extremely large heteroge-
neous databases spread over multiple files, possibly in different disks
or across the Web in different geographical locations. Often combining
such data in a single very large file may be infeasible. Development
of algorithms for mining data from distributed databases will open up
newer areas of applications in the near future.

1.15 CONCLUSIONS AND DISCUSSION

Data mining is a good area of scientific study, holding ample promise for
the research community. Recently a lot of progress has been reported for
large databases, specifically involving association rules, classification, cluster-
ing, similar time sequences, similar text document retrieval, similar image
retrieval, outlier discovery, etc. Many papers have been published in major
conferences and leading journals. However, it still remains a promising and
rich field with many challenging research issues.

In this chapter we have provided an introduction to knowledge discovery
from databases and data mining. The major functions of data mining have
been described from the perspectives of machine learning, pattern recogni-
tion, and artificial intelligence. Handling of multimedia data, their compres-
sion, matching, and their implications to text and image mining have been
discussed. We have also stated principles of string matching, explaining how
they can be applied in text retrieval and in Bioinformatics for DNA search
type of operations. Different application domains and research challenges have
also been highlighted.

Since the databases to be mined are often very large, parallel algorithms
are desirable [50]. However, one has to explore a trade-off between com-
putation, communication, memory usage, synchronization, and the use of
problem-specific information, in order to select a suitable parallel algorithm
for data mining. One can also partition the data appropriately and distribute
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the subsets to multiple processors, learning concept descriptions in parallel
and then combining them. This corresponds to loosely coupled collections of
otherwise independent algorithms and is termed distributed data mining [51].
Traditional data mining algorithms require all data to be mined in a single,
centralized data warehouse. A fundamental challenge is to develop distributed
versions of data mining algorithms, so that data mining can be done while
leaving some of the data in different places. In addition, appropriate proto-
cols, languages, and network services are required for mining distributed data,
handling the meta-data and the mappings required for mining the distributed
data.

Spatial database systems involve spatial data - that is, point objects or
spatially extended objects in a 2D/3D or some high-dimensional feature space.
Knowledge discovery is becoming more and more important in these databases,
as increasingly large amounts of data obtained from satellite images, X-ray
crystallography, or other automatic equipment are being stored in the spa-
tial framework. Image mining holds promise in handling such databases.
Moreover, Bioinformatics offers applications in modeling or analyzing protein
structures that are represented as spatial data.

There exist plenty of scope for the use of soft computing in data mining,
because of the imprecise nature of data in many application domains. For
example, neural nets can help in the learning, the fuzzy sets for natural lan-
guage representation and imprecision handling, and the genetic algorithms for
search and optimization. However, not much work has been reported in the
use of soft computing tools in data mining. The relevance of soft comput-
ing lies in its ability to (i) handle subjectivity, imprecision, and uncertainty in
queries, (ii) model document relevance as a gradual instead of a crisp property,
(iii) provide deduction capability to the search engines, (iv) provide person-
alization and learning capability, and (v) deal with the dynamism, scale, and
heterogeneity of Web documents.

We take this opportunity to compile in this book the existing literature on
the various aspects of data mining, highlighting its application to multimedia
information and Bioinformatics. Soft computing, an emergent technology, has
also demonstrated ample promise in data mining. Chapter 2 focuses on an
introduction to soft computing, its tools, and finally its role in the different
functions of data mining. The fundamentals of multimedia data compression,
particularly text and image compression, are dealt with in Chapter 3. Chap-
ter 4 deals in-depth with various issues in string matching. Here we provide
examples to show how patterns are matched in general text, as well as how
they can be applied in DNA matching in Bioinformatics. The different tasks
of data mining like classification, clustering and association rules are covered
in Chapters 5,6, and 7, respectively. The issue of rule generation and modu-
lar hybridization, in the soft computing framework, is described in Chapter 8.
Multimedia data mining, including text mining, image mining, and Web min-
ing, is dealt with in Chapter 9. Finally, certain aspects of Bioinformatics, as
an application of data mining, are discussed in Chapter 10.
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Soft Computing

2.1 INTRODUCTION

Data mining is a form of knowledge discovery essential for solving problems
in domains involving large volumes of data. The individual datasets may be
gathered and studied collectively for purposes other than those for which they
were originally created. New knowledge may also be obtained in the process,
while eliminating the cost of additional data collection. Besides, data often
exist in vast quantities over the Internet in an unstructured format. The
application of data mining facilitates systematic analysis in such cases and
helps the user in extracting relevant information. Sometimes different kinds
of data can be interspersed for better semantic representation, and often data
may be erroneous.

As an example, in medical data, numeric and textual information may be
interspersed, different symbols can be used with the same meaning, redun-
dancy often exists, and erroneous or misspelled medical terms are common.
Hence a robust preprocessing system is required in order to extract any kind
of knowledge from even medium-sized datasets.

Typically, real-life data must not only be cleaned of errors and redundancy,
but must also be organized in a fashion that makes sense to the problem.
There can exist imperfections in raw input data needed for knowledge ac-
quisition, mainly due to uncertainty, vagueness, and incompleteness. While
incompleteness arises due to missing or unknown data, uncertainty (or vague-
ness) can be caused by errors in physical measurements due to incorrect mea-
suring devices or by a mixture of noisy and pure signals.

35
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Soft computing is a consortium of methodologies that works synergistically
and provides, in one form or another, flexible information processing capa-
bility for handling real-life ambiguous situations [1]. Its aim is to exploit
the tolerance for imprecision, uncertainty, approximate reasoning, and par-
tial truth in order to achieve tractability, robustness, and low-cost solutions.
The guiding principle is to devise methods of computation that lead to an
acceptable solution at low cost, by seeking for an approximate solution to an
imprecisely or precisely formulated problem [2].

Recently, various soft computing methodologies have been applied to han-
dle the different challenges posed by data mining [3]. The main constituents of
soft computing, at this juncture, include fuzzy logic, neural networks, genetic
algorithms, rough sets, and signal processing tools such as wavelets. Each
of them contribute a distinct methodology for addressing problems in its do-
main. This is done in a cooperative, rather than a competitive, manner. The
result is a more intelligent and robust system providing a human-interpretable,
low-cost, approximate solution, as compared to traditional techniques.

This chapter provides an overview of the available literature on data min-
ing, which is scarce, in the soft computing framework [3]. An introduction
to soft computing and its constituent tools are provided in Section 2.2. Sec-
tions 2.3-2.8 explain the role of the different soft computing tools and their
hybridizations, categorized on the basis of different data mining functions im-
plemented. The utility and applicability of different soft computing method-
ologies is highlighted. It may be mentioned that there is no universally best
data mining method; choosing particular soft computing tool(s) or some com-
bination with traditional methods is entirely dependent on the particular ap-
plication, and it requires human interaction to decide on the suitability of an
approach.

Fuzzy sets provide a natural framework for the process in dealing with
uncertainty or imprecise data. Generally, they are suitable for handling the
issues related to understandability of patterns, incomplete and noisy data,
and mixed media information and human interaction and can provide ap-
proximate solutions faster. Neural networks are nonparametric and robust
and exhibit good learning and generalization capabilities in data-rich envi-
ronments. Genetic algorithms (GAs) provide efficient search algorithms to
optimally select a model, from mixed media data, based on some preference
criterion or objective function. Rough sets are suitable for handling differ-
ent types of uncertainty in data. Neural networks and rough sets are widely
used for classification and rule generation. Application of wavelet-based signal
processing techniques is new in the area of soft computing. Wavelet transfor-
mation of a signal results in decomposition of the original signal in different
multiresolution subbands [4, 5]. This is useful in dealing with compression
and retrieval of data, particularly images. Other approaches like case-based
reasoning [6] and decision trees [7, 8] are also widely used to solve data mining
problems.
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Section 2.9 concludes the chapter. Some challenges to data mining and the
possible application of soft computing methodologies are indicated.

2.2 WHAT IS SOFT COMPUTING?

Usually the primary considerations of traditional computing are precision,
certainty, and rigor. We distinguish this as "hard" computing. In contrast,
the principal notion in soft computing is that precision and certainty carry
a cost; and that computation, reasoning, and decision-making should exploit
(wherever possible) the tolerance for imprecision, uncertainty, approximate
reasoning, and partial truth for obtaining low-cost solutions. This leads to
the remarkable human ability of understanding distorted speech, deciphering
sloppy handwriting, comprehending the nuances of natural language, sum-
marizing text, recognizing and classifying images, driving a vehicle in dense
traffic, and, more generally, making rational decisions in an environment of
uncertainty and imprecision. The challenge, then, is to exploit the tolerance
for imprecision by devising methods of computation that lead to an accept-
able solution at low cost. This, in essence, is the guiding principle of soft
computing [1].

There are ongoing efforts to integrate artificial neural networks (ANNs),
fuzzy set theory, genetic algorithms (GAs), rough set theory and other method-
ologies in the soft computing paradigm. Hybridization [2, 9] exploiting the
characteristics of these theories include neuro-fuzzy, rough-fuzzy, neuro-genetic,
fuzzy-genetic, neuro-rough, rough-neuro-fuzzy approaches. However, among
these, neuro-fuzzy computing is the most visible. Let us now begin our dis-
cussion by pointing out the relevance of soft computing.

2.2.1 Relevance

The traditional hard computing paradigm is seldom suitable for many real-life
problems. Let us illustrate it with an example. Suppose that X is driving a
car and X watches a "red light" (traffic signal). X has to stop. So X has to
decide when to press the brake and how strongly. In a "precise framework,"
the steps followed by X may be to find the distance of the car from the
"light," and then, depending on the current speed of the car, press the brake.
To realize this, the car should be provided with a laser-gun-type arrangement
so that the distance can be obtained. X should also know a set of rules of the
form
"// the car is at a distance of d ft and moving at a speed of s ft/s, then press
the brake with p poundal for t seconds right now."

This is a precise rule governed by the laws of physics. Hence, if the brake
is applied according to such rules, the car will stop where X wants it to.
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Theoretically, such concepts are fine, but impractical because of the following
reasons:

• The addition of a laser gun to a car increases its cost.

• The number of precise rules required will be too great to realize in a
practical system.

• For the sake of argument, even if we assume that we know the rules to
be followed, application of the brakes following the rule will be a very
difficult task.

Precise solutions are not always feasible. In fact, we do not need a precise
solution to such a problem. The exact position where the car stops is not
important, but it should stop before the "red light" and should not hit any
other car standing ahead of it. Hence an approximate idea about the distance
of the car from the car or traffic signal ahead and the speed of the car should
be enough. Under this situation X can control the car using rules of the
form "If the car is moving very fast and the 'red light' is close, then press
the brake pretty hard."" We can easily say that the action is purely guided by
the intuition of an individual, the resultant decision being taken in imprecise
terms.

Note that the rule has three vague clauses "very fast," "close," and "pretty
hard." These make the rule an imprecise one, and it will generate an ap-
proximate solution to the problem. The solution is less expensive and fast
(real-time) also. This is one facet of what the soft computing paradigm for
emulating the human-like decision making (also, a real-world computing sys-
tem) attempts to achieve. Thus, to achieve higher machine IQ, the system
should have the capability of modeling vagueness and making approximate
decisions on that basis. Fuzzy sets are good for handling this aspect of soft
computing. In fact, this distinguished characteristic of fuzzy sets led to the
emergence of soft computing.

Let us now make the driving problem a bit more complex. Suppose that
X is driving on a very crowded road and has to reach the destination D.
From the present coordinate of X, there are a couple of alternative paths
to reach D. Depending on the traffic conditions, X should try to pick up an
optimal path. Note that the traffic conditions (traffic flows in either direction,
number of traffic signals that will appear on a path, raining or clear, etc.)
change with time, and hence what X thinks as the optimal path now may
not remain optimal after some time. Consequently, X has to dynamically
(adaptively) change the route. Human beings make approximate decisions for
such problems on the basis of their experience (learning from previous driving
experiences). If we want an intelligent system to achieve this capability, it
should have the ability to learn from experience and examples. Artificial
neural networks are adaptive systems and can deal with this aspect of the
problem.
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Any artificial neural network (ANN) that can be used for handling the
problem just mentioned must be fed with relevant information. In other
words, the ANN system has to be trained with adequate number of examples.
The popular gradient descent (say, backpropagation)-type learning algorithms
are usually very slow in learning and may get stuck at some local minimum.
Genetic algorithms (GAs), in such situations, may be very effectively used
for learning. If the number of free parameters of the network is large, GAs
may also become slow, but for GA-based learning, the chance of getting stuck
to a local minimum would be low. Consequently, we can expect a better
generalization ability of the network.

In the remaining part of this section we present the basics of the different
soft computing tools.

2.2.2 Fuzzy sets

We are continuously having to recognize people, objects, handwriting, voice,
images, and other patterns, using distorted or unfamiliar, incomplete, oc-
cluded, fuzzy, and inconclusive data, where a pattern should be allowed to
have membership or belongingness to more than one class. This is also very
significant in (say) medical diagnosis, where a patient afflicted with a certain
set of symptoms can be simultaneously suffering from more than one disease.
Again, the symptoms need not necessarily be strictly numerical. It would be
in natural terms, defined as linguistic and/or set variables such as very high,
more or less low, between 50°(7 and 55°C. This is how the concept offuzziness
comes into the picture.

Let us explain the concept of membership with an example. You ask a
friend to meet you at 10 a.m. tomorrow. It is highly likely that your friend
will arrive any time around 10 a.m., say, from 9.55 a.m. to 10.05 a.m. This
defines the concept of a membership function along the time axis, with a peak
(membership of 1) at 10 a.m. sharp having a bandwidth of 10 min. As you
move away either side from the peak, the membership approaches the value
0. The bandwidth, again, is problem- and context-dependent. Hence if the
person is serious, the bandwidth would be less, whereas otherwise the band-
width would usually be more. Thus we see that although 10 a.m. is a crisp
concept with {0,1} hard characterizing function, in reality it becomes fuzzy
with [0,1] graded membership function. One may note that the membership
value reflects the degree of compatibility or similarity of an event with an im-
precise concept representing a fuzzy set, whereas the probability of an event
is related to the number of times it occurs (i.e., its frequency).

Fuzzy sets were introduced in 1965 by Zadeh [10] as a new way of repre-
senting vagueness in everyday life. This theory provides an approximate and
yet effective means for describing the characteristics of a system that is too
complex or ill-defined to admit precise mathematical analysis [11, 12]. The
fuzzy approach is based on the premise that the key elements in human think-
ing are not just numbers but can be approximated to tables of fuzzy sets, or,



40 SOFT COMPUTING

in other words, classes of objects in which the transition from membership
to nonmembership is gradual rather than abrupt. Much of the logic behind
human reasoning is not the traditional two-valued or even multivalued logic,
but logic with fuzzy truths, fuzzy connectives, and fuzzy rules of inference.

Fuzzy set theory is reputed to handle, to a reasonable extent, uncertainties
(arising from deficiencies of information) in various applications particularly
in decision-making models under different kinds of risks, subjective judgment,
vagueness, and ambiguity. The deficiencies may result from various reasons,
namely, incomplete, imprecise, not fully reliable, vague, or contradictory in-
formation depending on the problem. Since this theory is a generalization of
the classical set theory, it has greater flexibility to capture various aspects of
incompleteness or imperfection in information about a situation.

The use of linguistic variables may be viewed as a form of data compression,
which can be termed granulation [I]. The same effect can also be achieved
by conventional quantization. However, in the case of quantization the values
are intervals, whereas in the case of granulation the values are overlapping
fuzzy sets. The advantages of granulation over quantization are that

• It is more general.

• It mimics the way in which humans interpret linguistic values.

• The transition from one linguistic value to a contiguous linguistic value
is gradual rather than abrupt, resulting in continuity and robustness.

Again, the uncertainty in classification or clustering of patterns may arise
from the overlapping nature of the various classes. This overlapping may result
from fuzziness or randomness. In the conventional classification technique, it
is usually assumed that a pattern belongs to only one class. This is not
necessarily realistic physically, and certainly not mathematically. A pattern
can and should be allowed to have degrees of membership in more than one
class. It is therefore necessary to convey this information while classifying a
pattern or clustering a dataset.

Let us now consider the problem of processing and recognizing a gray tone
image pattern. In a conventional vision system, each operation in low level,
middle level, and high level involves crisp decisions to make regions, features,
primitives, relations, and interpretations crisp. Since the regions in an im-
age are not always crisply defined, uncertainty can arise at every phase of
recognition tasks. Therefore it becomes convenient and natural and may be
appropriate to avoid committing ourselves to specific (hard) decision by al-
lowing the segments or contours to be fuzzy subsets of the image; the subsets
are characterized by the possibility (degree) of a pixel belonging to them.

A fuzzy set A in a space of points R ~ {r} is a class of events with a
continuum of grades of membership, and it is characterized by a membership
function /M(r) that associates with each element in R a real number in the
interval [0,1] with the value of HA (r) at r representing the grade of member-
ship of r in A. Formally, a fuzzy set A with its finite number of supports
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r2, . . . , rn is defined as a collection of ordered pairs

A = {(^(ri),ri),i = 1,2, ...,n

where the support of A is an ordinary subset of R and is defined as

S(A) = {r\r E R and nA(r) > 0}.

Here /Zj, the grade of membership of r^ in A, denotes the degree to which an
event TJ may be a member of A or belong to A. Note that /Zj = 1 indicates
the strict containment of the event TJ in A. If, on the other hand, T-J does not
belong to A, then /Zj = 0.

If the support of a fuzzy set is only a single point r\ 6 R, then

is called a fuzzy singleton. Thus A = (1/ri), for p,\ = 1, would obviously
denote a nonfuzzy singleton.

In terms of the constituent singletons the fuzzy set A with its finite number
of supports ri, r2, . . . , rn can also be expressed in union form as

A - *f + g + "- + ̂
= E*?1. * = l ,2 , . . . , n (2.1)
= (J*£. » = 1,2,. . . .n,

where the + sign denotes the union.
Fuzzy logic is based on the theory of fuzzy sets and, unlike classical logic,

aims at modeling the imprecise (or inexact) modes of reasoning and thought
processes (with linguistic variables) that play an essential role in the remark-
able human ability to make rational decisions in an environment of uncertainty
and imprecision. This ability depends, in turn, on our ability to infer an ap-
proximate answer to a question based on a store of knowledge that is inexact,
incomplete, or not totally reliable. In fuzzy logic, everything, including truth,
is a matter of degree [13]. Zadeh has developed a theory of approximate rea-
soning based on fuzzy set theory. By approximate reasoning we refer to a type
of reasoning that is neither very exact nor very inexact. This theory aims at
modeling the human reasoning and thinking process with linguistic variables
[11] in order to handle both soft and hard data, as well as various types of
uncertainty. Many aspects of the underlying concept have been incorporated
in designing decision-making systems [14, 15].

Assignment of membership functions of a fuzzy subset is subjective in na-
ture and reflects the context in which the problem is viewed. It cannot be
assigned arbitrarily. In many cases, it is convenient to express the membership
function of a fuzzy subset in terms of standard S and IT functions. Note that
fuzzy membership function and probability density function are conceptually
different.
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Fig. 2.1 Standard S function.

2.2.2.1 Membership functions It is frequently convenient to employ stan-
dardized functions with adjustable parameters (e.g., the S and TT functions)
which are denned in the following equations (see also Fig. 2.1):

5(r; a,(3,c) = 0

= 1

for r < a
for a < r < ft
for /3 < r < c
for r > c.

(2.2)

(2.3)
7r(r; c, A) = 5(r;c — A,c — ̂ ,c) for r < c

= 1 — 5(r;c, c + f,c-f A) for r > c.

In S(r; a, /5, c), the parameter /?,/?= (a-f c)/2, is the crossover point, that is,
the value of r at which S takes the value 0.5. In ?r(r; c, A), A is the bandwidth,
that is, the distance between the crossover points of TT, while c is the central
point at which TT is unity.

Let us consider the linguistic variable age (x). Here the linguistic values
young and old play the role of primary fuzzy sets which have a specified
meaning, for example,

Vyoung = 1-5(20,30,40),

Void = 5(50,60,70),

(2.4)

(2.5)

where the S and TT functions are defined by Eqs. (2.2) and (2.3), and
and n0id denote the membership functions of young and old, respectively.

In pattern recognition problems we often need to represent a class with
fuzzy boundary in terms of a TT function. A representation for such a TT

1 function, with range [0,1] and r € JRn, may be given as [2]

7r(r; c, A) =

0,

for |< ||r-c||<A

for 0 < ||r - c|| < |

otherwise,

(2.6)
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Fig. 2.2 TT function when r € R2-

where A > 0 is the radius of the -n function with c as the central point and ||.||
denotes the Euclidean norm. This is shown in Fig. 2.2 for r e JR2. Note that
when the pattern r lies at the central point c of a class, then ||r — c|| = 0 and
its membership value is maximum, that is, TT(C;C, A) = 1. The membership
value of a point decreases as its distance from the central point c (i.e., ||r — c||)
increases. When ||r — c|| = A/2, the membership value of r is 0.5, and this is
called a crossover point.

2.2.2.2 Basic operations Basic operations related to fuzzy subsets A and B
of R having membership values /MO") and HB(T}, r e R respectively, are
summarized here [15].

• A is equal to B (i.e., A = B) => HA(T) = VB(r), for all r 6 R.

^ r = --r = I —• A is a complement of B (i.e., A = B) =$• //
all r 6 R.

• A is contained in B (A C B) =$• HA^T) <

• The union of A and B (A U B) => P.A\JB(T} ==
r 6 R, where V denotes maximum.

• The intersection of A and B (A n B)
all r 6 R, where A denotes minimum.

for all r € R.

(r) for

for all

r for

We also have the modifiers not, very, and more or less. These are explained,
in terms of the linguistic value young, as follows:

fJ"not young — •*• (2.7)
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P-very young ~ (Pyoung) i

A*not very young = 1 ~ (f^young) >

A^more or less young = {fAyoung) •

2.2.3 Neural networks

There are millions of very simple processing elements or neurons in the brain,
linked together in a massively parallel manner. This is believed to be respon-
sible for the human intelligence and discriminating power. All information is
stored in a distributed fashion among the connection weights. There is also
a large amount of redundancy inherent among the connections, leading to a
graceful degradation of performance in case of any damage. Artificial neural
networks (ANNs) or connectionist models implement important aspects of a
pattern recognition system like robustness, adaptivity, speed, and learning.
An ANN learns through examples the discriminating characteristics among
various pattern classes, by reducing the error and automatically discovering
inherent relationships in a data-rich environment. No rules or programmed
information sequences need to be specified beforehand. This procedure bears
an analogy to how a baby learns to recognize objects, or perhaps learns to
speak.

Artificial neural networks (ANNs) [16]-[21] are signal processing systems
that try to emulate the behavior of biological nervous systems by providing
a mathematical model of combination of numerous neurons connected in a
network. These can be formally defined as massively parallel interconnections
of simple (usually adaptive) processing elements that interact with objects of
the real world in a manner similar to biological systems. ANNs attempt to
replicate the computational power (low-level arithmetic processing ability) of
biological neural networks and, thereby, hopefully endow machines with some
of the (higher-level) cognitive abilities that biological organisms possess (due
in part, perhaps, to their low-level computational prowess).

The origin of ANNs can be traced to the work of Hebb [22], where a local
learning rule was proposed. This rule assumed that correlations between the
states of two neurons determined the strength of the coupling between them.
Subsequently, a synaptic connection that was very active grew in strength and
vice versa.

The various models are designated by the network topology, node char-
acteristics, and the status updating rules. Network topology refers to the
structure of interconnections among the various nodes (neurons) in terms
of layers and/or feedback or feedforward links. Node characteristics mainly
specify the operations it can perform, such as summing the weighted inputs
incident on it and then amplifying or applying some aggregation operators
on it. The updating rules may be for weights and/or states of the processing
elements (neurons). Normally, an objective function, representing the status
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of the network, is defined such that its set of minima correspond to the set of
stable states of the network.

Tasks that neural networks can perform include pattern classification, clus-
tering or categorization, function approximation, prediction or forecasting, op-
timization, retrieval by content, and control. ANNs can be viewed as weighted
directed graphs in which artificial neurons are nodes and directed edges (with
weights) are connections between neuron outputs and neuron inputs. On the
basis of the connection pattern (architecture), ANNs can be grouped into two
categories:

• Feedforward networks, in which graphs have no loops - for example,
single-layer perceptron, multilayer perceptron, radial basis function net-
works, Kohonen network

• Recurrent (or feedback) networks, in which loops occur because of feed-
back connections - for example, Hopfield network, adaptive resonance
theory (ART) models

The computational neuron model proposed by McCulloch and Pitts [23] is
a simple binary threshold unit.

Thus Xj (t + 1) - /(£. Wij Xi(t) - 0,),
where f ( x ) = I if x > 0

= 0 otherwise,

and Xj is the input of the jth neuron with threshold Oj. If the synaptic
weight Wij > 0, then it is called an excitatory connection; if Wij < 0, it is
viewed as an inhibitory connection. A synchronous assembly of McCulloch-
Pitts neurons is capable, in principle, of universal computation for suitably
chosen weights [17]. Such an assembly can perform any computation that an
ordinary digital computer can.

The adaptability of a neural network comes from its capability of learning
from "environments." Broadly, there are three paradigms of learning: su-
pervised, unsupervised (or self-organized), and reinforcement. Sometimes,
reinforcement is viewed as a special case of supervised learning. Under each
category there are many algorithms. In supervised learning (learning with
a teacher), adaptation is done on the basis of direct comparison of the net-
work output with known correct or desired answer. Unsupervised learning
does not learn any specific input-output relation. Here the network is tuned
to the statistical regularities of the input data to form categories (or par-
titions) by optimizing, with respect to the free parameters of the network,
some task-independent measure of quality of the representation. The rein-
forcement learning, on the other hand, attempts to learn the input-output
mapping through trial and error with a view to maximizing a performance
index called reinforcement signal. Here the system only knows whether the
output is correct, but not what the correct output is.
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ANNs are natural classifiers having resistance to noise, tolerance to dis-
torted images or patterns (ability to generalize), superior ability to recognize
partially occluded or degraded images or overlapping pattern classes or classes
with highly nonlinear boundaries, and potential for parallel processing. They
use nonparametric adaptive learning procedures, learn from examples, and
discover important underlying regularities in the task domain.

For example, consider the case of supervised classification. Here a pattern
is characterized by a number of features, each taking up different weights in
characterizing the classes. A multilayer perceptron in which the input layer
has neurons equal to the number of features and the output layer has neurons
equal to the number of classes can be used to tackle this classification problem.
Here the importance of different features will automatically be encoded in
the connection links during training. The nonlinear decision boundaries are
modeled, and class labels are assigned by taking collective decisions.

There has been widespread activity aimed at extracting the embedded
knowledge in trained ANNs in the form of symbolic rules [2, 24, 25]. This
serves to identify the attributes that, either individually or in a combination,
are the most significant determinants of the decision or classification. Since
all information is stored in a distributed manner among the neurons and their
associated connectivity, any individual unit cannot essentially be associated
with a single concept or feature of the problem domain.

Generally ANNs consider a fixed topology of neurons connected by links
in a predefined manner. These connection weights are usually initialized by
small random values. Knowledge-based networks [26, 27] constitute a special
class of ANNs that consider crude domain knowledge to generate the initial
network architecture, which is later refined in the presence of training data.
The use of knowledge-based nets helps in reducing the searching space and
time while the network traces the optimal solution. Typically, one extracts
causal factors and functional dependencies from the data domain for initial
encoding of the ANN [25, 28] and later generates refined rules from the trained
network.

2.2.3.1 Single-layer perceptron The concept of perceptron [29, 30] was one of
the most exciting developments during the early days of pattern recognition.
The classical (single-layer) perceptron, given two classes of patterns, attempts
to find a linear decision boundary separating the two classes.

A perceptron consists of a single neuron with adjustable weights, Wj, j =
1,2,... , n, and threshold 0. Given an input vector x — [x\, x2 , . . . , xn]T, the
net input to the neuron is

n

v = ̂  WjXj - 9. (2.11)
3=1

The output y of the perceptron is 4-1 if v > 0 and is 0 otherwise. In a
two-class classification problem, the perceptron assigns an input pattern to
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one class if y — 1 and to the other class if y = 0. The linear equation
YJj=\ Wjxj — 9 — 0 defines the decision boundary (a hyperplane in the n-
dimensional input space) that halves the space. Rosenblatt [30] developed a
learning procedure to determine the weights and threshold in a perceptron,
given a set of training patterns. This algorithm is outlined as follows:

1. Initialize the weights and threshold to small random numbers.

2. Present a pattern vector [xi, x%, • • • » x n ] T and evaluate the output of the
neuron.

3. Update the weights according to

Wj(t + 1) = Wj(t) + e(d - y}Xj, (2.12)

where d is the desired output, t is the iteration number, and e (0.0 <
e < 1.0) is the learning rate (step size).

Note that learning occurs only when the perceptron makes an error. This
has an interesting explanation from the information theoretic perspective.
Usually we expect new information when there is occurrence of an error, and
hence it provides an opportunity for new learning.

Rosenblatt proved that when training patterns are drawn from two linearly
separable classes, the perceptron learning procedure converges after a finite
number of iterations. If the pattern space is not linearly separable, the per-
ceptron fails [31]. A single-layer perceptron is inadequate for situations with
multiple classes and nonlinear separating boundaries. Hence the invention of
the multilayer perceptron network.

2.2.3.2 Multilayer perceptron (MLP) using backpropagation of error The mul-
tilayer perceptron (MLP) [18] consists of multiple layers of simple, two-state,
sigmoid processing elements (nodes) or neurons that interact using weighted
connections. After a lowermost input layer there are one or more intermediate
hidden layers, followed by an output layer at the top. There exist no inter-
connections within a layer, while all neurons in a layer are fully connected to
neurons in adjacent layers.

An external input vector is supplied to the network by clamping it at the
nodes in the input layer. For conventional classification problems, during
training, the appropriate output node is clamped to state 1 while the others
are clamped to state 0. This is the desired output supplied by the teacher.
The number of units in the output layer H corresponds to the number of
output classes.

Consider the network given in Fig. 2.3. The total input x^+l received by
neuron j in layer h+1 is defined as



48 SOFT COMPUTING

Fig. 2.3 MLP with three hidden layers.

where y^ is the state of the zth neuron in the preceding hih layer, w^ is the
weight of the connection from the ith neuron in layer h to the j'th neuron
in layer h + 1 and 0^+1 is the threshold of the jth neuron in layer h + 1.
Threshold 0^+1 may be eliminated by giving the unit j in layer h + I an extra
input line with a fixed activity level of 1 and a weight of — 0^+1.

The output of a neuron in any layer other than the input layer (h > 0) is
a monotonic nonlinear function of its total input and is expressed as

1
1 + e

For nodes in the input layer
« _2/7 —

(2.14)

(2.15)

where x° is the jth component of the input vector clamped at the input layer.
Learning consists of minimizing the error by updating the weights. It involves
searching a very large parameter space and therefore is usually rather slow.

The least mean square (LMS) error in output vectors, for a given network
weight vector iu, is defined as

(2.16)
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where y?p(w) is the state obtained for output node j in layer H for input-
output pattern p and dj>p is its desired state specified by the teacher. One
method for minimization of E(w) is to apply the method of gradient descent
by starting with any set of weights and repeatedly updating each weight by
an amount

t-l), (2.17)
(JWji

where the positive constant e controls the descent, 0 < a < I is the damping
coefficient or momentum, and t denotes the number of the iteration currently
in progress. Generally e and a are set at constant values, but there exist
approaches that vary these parameters. Initially the connection weights w^
between each pair of neurons i in layer h and j in layer h + 1 are set to small
random values lying in the range [—0.5,0.5].

From Eqs. (2.13)-(2.14) and (2.16), we have

dE dE dvj dx-i dE h .

For the output layer (h — H), we substitute in Eq. (2.18)

For the other layers, using Eq. (2.13), we substitute in Eq. (2.18)

dE ddx dE dy h

dyk dxk dyj Y dyk dxk
 Wkj' ( ' U'

where units j and k lie in layers h and h + 1, respectively.
During training, each pattern of the training set is used in succession to

clamp the input and output layers of the network. A sequence of forward
and backward passes using Eqs. (2.13)-(2.20) constitute a cycle, and such
a cycle through the entire training set is termed a sweep. After a number
of sweeps through the training data, the error E(w) in Eq. (2.16) may be
minimized. At this stage the network is supposed to have discovered (learned)
the relationship between the input and output vectors in the training samples.

In the testing phase the neural net is expected to be able to utilize the
information encoded in its connection weights to assign the correct output
labels for the test vectors that are now clamped only at the input layer. It
should be noted that the optimal number of hidden layers and the number
of units in each such layer are generally determined empirically, although
growing, pruning, and other optimization techniques are also in vogue.

2.2.3.3 Kohonen network The essential constituents of Kohonen neural net-
work model are as follows [19]:

• An array of neurons receiving coherent inputs, simultaneously, and com-
puting a simple output function.
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• A mechanism for comparing the neuronal outputs to select the neuron
producing maximum output.

• A local interaction between the selected neuron and its neighbors.

• An adaptive mechanism that updates the interconnection weights.

The self-organizing feature map (SOFM) is an unsupervised learning net-
work [19], which transforms p-dimensional input patterns to a q-dimensional
(usually q = 1 or 2) discrete map in a topologically ordered fashion. In-
put points that are close in p-dimension are also mapped closely on the q-
dimensional lattice. Each lattice cell is represented by a neuron that has a
j?-dimensional adaptable weight vector associated with it. With every input
the match with each weight vector is computed. Then the best matching
weight vector and some of its topological neighbors are adjusted to match the
input points a little better. Initially, the process starts with a large neigh-
borhood; with passage of time (iteration), the neighborhood size is reduced
gradually. At a given time instant, within the neighborhood, the weight vector
associated with each neuron is not updated equally. The strength of inter-
action between the winner and a neighboring node is inversely related to the
distance (on the lattice) between them.

Consider the self-organizing network given in Fig. 2.4. Let M input signals
be simultaneously incident on each of an N x N array of neurons. The output
of the zth neuron is defined as

Tmi(t)} x(t) + Wki rjk(t - At) (2.21)

where x is the M-dimensional input vector incident on it along the connection
weight vector m*, k belongs to the subset Si of neurons having interconnec-
tions with the ith neuron, Wki denotes the fixed feedback coupling between
the fcth and ith neurons, &[.] is a suitable sigmoidal output function, t denotes
a discrete time index, and T stands for the transpose.

Initially the components of the m* values are set to small random values
lying in the range [0, 0.5]. If the best match between vectors ra^ and x occurs
at neuron c, then we have

\\x-rnc\\=imn \\x-rm\\, i = 1,2, ... ,AT2, (2.22)
i

where ||.|| indicates the Euclidean norm.
The weight updating is given as [19]

m (t .mi(t - m<(t) otherwise,

where a(t) is a positive constant that decays with time and Nc defines a topo-
logical neighborhood around the maximally responding neuron c, such that
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Fig. 2.4 Kohonen neural network.

it also decreases with time. Different parts of the network become selectively
sensitized to different inputs in an ordered fashion so as to form a continuous
map of the signal space. After a number of sweeps through the training data,
with weight updating at each iteration obeying Eq. (2.23), the asymptotic
values of rm cause the output space to attain proper topological ordering.
This is basically a variation of unsupervised learning.

2.2.3.4 Learning vector quantization (LVQ) Vector quantization can be seen
as a mapping from an n-dimensional Euclidean space into a finite set of pro-
totypes. Based on this principle, Kohonen proposed an unsupervised learning
algorithm, which is a special case of SOFM and is known as LVQ [19]. In
LVQ, only the weight vector associated with the winner node is updated with
every data point by Eq. (2.23). The topological neighborhood is not updated
here. Such a learning scheme, where all nodes compete to become the win-
ner, is termed competitive learning. It is essentially a clustering network that
does not care about preserving the topological order. Its main uses are for
clustering, classification, and image data compression [32].

There exists a family of LVQs, termed LVQl and LVQ2 [19]. These al-
gorithms are supervised learning schemes, essentially used as classifiers. The
basic idea behind LVQl is as follows. If the winner prototype m, has the same
class label as that of the data point x, then bring rm closer to x; otherwise,
move m, away from x. Nonwinner nodes are not updated. LVQ2, a modified
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Fig. 2.5 Radial basis function network.

form of LVQ1, is designed to make the learning scheme comply better with
Bayes' decision-making philosophy (described in Section 5.3). This algorithm
considers the winner along with the runner-up (second winner).

2.2.3.5 Radial basis function network A radial basis function (RBF) network
[33, 34] consists of two layers as shown in Fig. 2.5. The connection weight
vectors of the input and output layers are denoted as p, and iy, respectively.
The basis (or kernel) functions in the hidden layer produce a localized response
to the input stimulus. The output nodes form a weighted linear combination
of the basis functions computed by the hidden nodes.

The input and output nodes correspond to the input features and output
classes, while the hidden nodes represent the number of clusters (specified by
the user) that partition the input space. Let x = (xi , . . . , X j , . . . , x n ) € Rn

and y — ( j / i , . . . , y* , . . . , yi) 6 Rl be the input and output, respectively, and
let m be the number of hidden nodes.

The output Uj of the jih hidden node, using the Gaussian kernel function
as a basis, is given by

= exp
la]

(2.24)

where x is the input pattern, p,j is its input weight vector (i.e., the center of
the Gaussian for node j), and cr| is the normalization parameter, such that
0 < Uj < I (the closer the input is to the center of the Gaussian, the larger
the response of the node).

The output yj of the jih output node is

Vj = (2.25)
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where Wj is the weight vector for this node, and u is the vector of outputs
from the hidden layer. The network performs a linear combination of the
nonlinear basis functions of Eq. (2.24).

The problem is to minimize the error

^E D^p-^p)2' (2-26)
P=l j=l

where djtp and T/J)P are desired and computed output at the jih node for the
pth pattern, N is the size of the data set, and / is the number of output nodes.

Learning in the hidden layer, typically, uses the c-means clustering algo-
rithm (described in Section 6.3.1.1). Let the cluster centers, so determined,
be denoted as /i •, j = 1, . . . , m. The normalization parameter cr, represents
a measure of the spread of data associated with each node.

Learning in the output layer is performed after the parameters of the basis
functions have been determined. The weights are typically trained using the
LMS algorithm given by

= -e(Vj - dj>, (2.27)

where e is the learning rate.

2.2.4 Neuro-fuzzy computing

The concept of ANNs was inspired by biological neural networks, which are
inherently nonlinear, adaptive, highly parallel, robust, and fault tolerant.
Fuzzy logic, on the other hand, is capable of modeling vagueness, handling
uncertainty, and supporting human-type reasoning. One may therefore nat-
urally think of judiciously integrating them by augmenting each other in or-
der to build a more intelligent information system, in neuro-fuzzy comput-
ing paradigm [2, 35, 36], with recognition performance better than those ob-
tained by the individual technologies. It incorporates both the generic and
application-specific merits of ANNs and fuzzy logic into the hybridization.

Both fuzzy systems and ANNs are soft computing approaches to modeling
expert behavior. The goal is to mimic the actions of an expert who solves
complex problems. A learning process can be part of knowledge acquisition.
In the absence of an expert, or sufficient time or data, one can resort to
reinforcement learning instead of supervised learning. If one has knowledge
expressed as linguistic rules, one can build a fuzzy system. On the other hand,
if one has data, or can learn from a simulation or the real task, ANNs are more
appropriate. The integration of neural and fuzzy systems leads to a symbiotic
relationship, in which fuzzy systems provide a powerful framework for expert
knowledge representation, while neural networks provide learning capabilities
and suitability for computationally efficient hardware implementations.

It has been proved [37] that (i) any rule-based fuzzy system may be approx-
imated by a neural net, and (ii) any neural net (feedforward, multilayered)
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may be approximated by a rule-based fuzzy system. Jang and Sun [38] have
shown that fuzzy systems are functionally equivalent to a class of radial basis
function (RBF) networks, based on the similarity between the local receptive
fields of the network and the membership functions of the fuzzy system.

Fuzzy systems can be broadly categorized into two families. The first
includes linguistic models based on collections of IF-THEN rules, whose an-
tecedents and consequents utilize fuzzy values. It uses fuzzy reasoning, and
the system behavior can be described in natural terms. The Mamdani model
[39] falls in this group. The knowledge is represented as

/f : IF zi is A\ AND x2 is A^ ... AND xn is Al
m

THEN y* is £', (2.28)

where Rl(i = 1 ,2 , . . . , / ) denotes the iih fuzzy rule, Xj(j = 1,2, . . . ,n) is
the input, y* is the output of the fuzzy rule Rz, and A], A?,..., Al

m, B*(i =
1,2, . . . , / ) are fuzzy membership functions usually associated with linguistic
terms.

The second category, based on Sugeno-type systems [40], uses a rule struc-
ture that has fuzzy antecedent and functional consequent parts. This can be
viewed as the expansion of piecewise linear partition represented as

1C : IF xi is A{ AND x2 is A% ... AND xn is A^

THEN y* = c& + a\xi + ... + a^Xn. (2.29)

The approach approximates a nonlinear system with a combination of several
linear systems, by decomposing the whole input space into several partial fuzzy
spaces and representing each output space with a linear equation. Such models
are capable of representing both qualitative and quantitative information and
allow relatively easier application of powerful learning techniques for their
identification from data. They are capable of approximating any continuous
real-valued function on a compact set to any degree of accuracy [41].

There is always a trade-off between readability and precision. If one is
interested in a more precise solution, then one is usually not so bothered
about its linguistic interpretability. Sugeno-type systems are more suitable in
such cases. Otherwise, the choice is for Mamdani-type systems.

Extraction of rules from neural nets enables humans to understand their
prediction process in a better manner. This is because rules are a form of
knowledge that human experts can easily verify, transmit, and expand. Rep-
resenting rules in natural form aids in enhancing their comprehensibility for
humans. This aspect is suitably handled using fuzzy set-based representa-
tions.

Neuro-fuzzy hybridization [2] is done broadly in two ways: a neural network
equipped with the capability of handling fuzzy information [termed fuzzy-
neural network (FNN)], and a fuzzy system augmented by neural networks
to enhance some of its characteristics like flexibility, speed, and adaptability
[termed neural-fuzzy system (NFS)].
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In an FNN either the input signals and/or connection weights and/or the
outputs are fuzzy subsets or a set of membership values to fuzzy sets (e.g.,
Refs. [42]-[44]). Usually, linguistic values (such as low, medium, and high) or
fuzzy numbers or intervals are used to model these. Neural networks with
fuzzy neurons are also termed FNNs because they are capable of processing
fuzzy information.

A neural-fuzzy system (NFS), on the other hand, is designed to realize
the process of fuzzy reasoning, where the connection weights of the network
correspond to the parameters of fuzzy reasoning (e.g., Refs. [45] and [46].
Using the backpropagation-type learning algorithms, the NFS can identify
fuzzy rules and learn membership functions of the fuzzy reasoning. Typically,
the NFS architecture has distinct nodes for antecedent clauses, conjunction
operators, and consequent clauses.

The state of the art for the different techniques of judiciously combining
neuro-fuzzy concepts involves synthesis at various levels. In general, these
methodologies can be broadly categorized as follows. Note that categories 1
and 3-5 relate to FNNs while category 2 refers to NFS.

1. Incorporating fuzziness into the neural net framework: fuzzifying the
input data, assigning fuzzy labels to the training samples, possibly fuzzi-
fying the learning procedure, and obtaining neural network outputs in
terms of fuzzy sets [44, 47, 43].

2. Designing neural networks guided by fuzzy logic formalism: designing
neural networks to implement fuzzy logic and fuzzy decision-making,
and to realize membership functions representing fuzzy sets [48]-[46].

3. Changing the basic characteristics of the neurons: neurons are designed
to perform various operations used in fuzzy set theory (like fuzzy union,
intersection, aggregation) instead of the standard multiplication and
addition operations [49, 50, 51].

4. Using measures of fuzziness as the error or instability of a network:
the fuzziness or uncertainty measures of a fuzzy set are used to model
the error or instability or energy function of the neural network-based
system [52].

5. Making the individual neurons fuzzy: the input and output of the neu-
rons are fuzzy sets and the activity of the networks, involving the fuzzy
neurons, is also a fuzzy process [42].

2.2.5 Genetic algorithms

Genetic algorithms (GAs) [53, 54] are adaptive and robust computational
search procedures, modeled on the mechanics of natural genetic systems. They
act as a biological metaphor and try to emulate some of the processes observed
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in natural evolution. While evolution operates on encodings of biological en-
tities in the form of a collection of genes called a chromosome, GAs operate
on string representation of possible solutions in terms of individuals or chro-
mosomes containing the features. The feature value, the string structure and
the string structure's decoded value in case of a GA correspond to the allele,
genotype, and phenotype in natural evolution.

The components of a GA consist of

• Population of individuals

• Encoding or decoding mechanism of the individuals

• Objective function and an associated fitness evaluation criterion

• Selection procedure

• Genetic operators like recombination or crossover, mutation

• Probabilities to perform the genetic operations

• Replacement technique

• Termination conditions

Let us consider, as an example, the optimization of a function

y =

A binary vector is used as a chromosome to represent real values of the vari-
ables Xi, with the length of the vector depending on the required precision.
A population is a set of individuals (chromosomes) representing the concate-
nated parameter set X i , x-z, • • • , xp, where each member refers to a coded pos-
sible solution. For example, a sample chromosome

0000|0100|...|1100

could correspond to Xi = 0000, x% = 0100, and xp = 1100. The chromosomes
can be of fixed or variable size. Selection obeys the Darwinian survival of
the fittest strategy, with the objective function playing the role of Nature
(environment). Variation is introduced in the population through the genetic
operations like recombination (crossover) and mutation. Normally the initial
population is chosen randomly.

Encoding is used to convert parameter values into chromosomal representa-
tion. In case of continuous- valued parameters, a decimal-to-binary conversion
is used. For example, using a 5-bit representation, 13 is encoded as 01101. In
case of parameters having categorical values, a particular bit position in the
chromosomal representation is set to 1 if it comes from a certain category. For
example, the gender of a person can have values from {male, female}, such
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that male/female is represented by the string 10/01. These strings (represent-
ing the parameters of a problem) are concatenated to form a chromosome.

Decoding is the reverse of encoding. For a continuous-valued parameter
the binary representation is converted to a continuous value by the expression

•^.bits-used— 1 i •, r\i

lower -bound + =~bit U8ed — * - * (upper -bound — lower -bound).
£ "~ ~~~ J.

Hence 01101 in five bits (bits-used] is decoded back to 13, using lower -bound =
0 and upper Jbound = 31. In case of categorical parameters, the value is found
by consulting the original mapping.

The fitness function provides a measure of a chromosome's performance.
Selection gives more chance to better-fitted individuals, thereby mimicking the
natural selection procedure. Some of the popular selection techniques include
roulette wheel selection, stochastic universal sampling, linear normalization
selection, and tournament selection. The roulette wheel selection procedure
initially sums the fitness values (^s) of all the N chromosomes in the pop-
ulation, and it stores them in slots sized accordingly. Let this sum be given
by total -fitness. The probability of selection pi for the ith chromosome is
expressed as

p. = - li - (2.30)
total-fitness

while the cumulative probability qi after inclusion of the ith chromosome is
given by

3=1

Selection is made by spinning the roulette wheel N times, on each occasion
generating a random number nr in [0, total -fitness]. This returns the first
chromosome whose fitness, when added to the fitness of the preceding popu-
lation members, is greater than or equal to nr. In rule form, we have

IF nr < qi THEN select the first chromosome,
ELSE select the ith chromosome such that Qi-i < nr < qi.

For example, let there be five chromosomes with fitness values 40, 30, 18,
10, 2, having total-fitness = 100. These constitute slots sized 40%, 30%,
18%, 10%, and 2% of the area of the wheel. Each time one requires to select a
chromosome, for applying crossover or mutation, a simple spin of the roulette
wheel is made with nr. Here, with nr = 45, the algorithm selects the second
chromosome, since 40 + 30 > 45.

Recombination or crossover is modeled by choosing mating pairs from the
selected chromosomes. Crossover probability pc is used to determine whether a
pair should be crossed over, and then the corresponding chromosome segments
are interchanged. A random number nrc is generated in the range [0, 1]. If
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nrc < PC, the corresponding chromosome pair is selected for crossover. Again,
crossover can be one point, two point, multipoint, or uniform. Let us consider,
as an example, two parent chromosomes xyxyxyxy and abababab where x, y,
o, 6 are binary. In one-point crossover at the 6th bit involving the parent
chromosomes

xyxyx\yxy

ababa\bab,

one generates the children
xyxyx\bab

ababa\yxy.

Here the segment involving bits 6 to 8 is interchanged between the parents.
In case of two-point crossover at the 3rd and 6th bits, involving parent chro-
mosomes

xy\xyx\yxy

ab\aba\bab,

we obtain the children chromosomes

xy\aba\yxy

ab\xyx\bab.

Here the segment constituting bits 3 to 5 is swapped between the parents to
generate the pair of offsprings.

Mutation is used to introduce diversity in the population. Mutation prob-
ability pm determines whether a bit should be mutated, and then the corre-
sponding location is flipped. For example, a mutation at the 3rd bit would
transform the chromosome 00|1|000 to 00|0|000. Probabilities pc and pm can
be fixed or variable, and they typically have values ranging between 0.6 to
0.9, and 0.001 to 0.01, respectively.

Let us consider a simple example related to minimizing the surface area
A of a solid cylinder, given radius r and height h, to illustrate the working
principle of GAs. Here the fitness function can be expressed as

A = 2n * r * h + 2?r * r2 — 2n * r(h + r).

We need to encode the parameters r and h in a chromosome. Using a 3-
bit representation, we demonstrate encoding, crossover, and mutation. For
n = 3, hi = 4 and r% = 4, h-2 = 3, we generate parent chromosomes 011(100
and 100)011 with AI — 132, AI — 176, respectively. Let there be one-point
crossover at bit 4, producing the children chromosomes 011(011 and 100J100.
This is decoded as r\c = 3, h\c = 3 and r^c — 4, h%c = 4, with A\c = 16.16
and A-2C = 28.72, respectively. Now, let there be mutation at bit 5 of the first
child. This generates the chromosome 0110|0|1, for ricm = 3 and h\cm = 1,



WHAT IS SOFT COMPUTING? 59

with Aicm = 10.77. This is the minimum value of fitness obtained thus far.
Consecutive applications of the genetic operations of selection, crossover, and
mutation, up to termination, enable the minimization (optimization) of the
chosen fitness function.

The replacement techniques can be

1. Generational, where all the n individuals are replaced at a time by the
n children created by reproduction. Elitism is often introduced to retain
the best solution obtained so far.

2. Steady state, where m < n members are replaced at a time by the m
children reproduced.

The terminating criterion for the algorithm can be on the basis of

• execution for a fixed number of generations or iterations,

• a bound on the fitness value of the generated solution, or

• acquiring of a certain degree of homogeneity by the population.

GAs have been applied in diverse problems involving optimization, schedul-
ing, graph coloring, genetic programming, pattern recognition, image pro-
cessing, data mining, artificial immune systems, and financial prediction or
bidding strategies.

2.2.6 Rough sets

The theory of rough sets [55] has recently emerged as another major math-
ematical tool for managing uncertainty that arises from granularity in the
domain of discourse - that is, from the indiscernibility between objects in
a set. The intention is to approximate a rough (imprecise) concept in the
domain of discourse by a pair of exact concepts, called the lower and upper
approximations. These exact concepts are determined by an indiscernibility
relation on the domain, which, in turn, may be induced by a given set of
attributes ascribed to the objects of the domain. The lower approximation is
the set of objects definitely belonging to the vague concept, whereas the up-
per approximation is the set of objects possibly belonging to the same. These
approximations are used to define the notions of discernibility matrices, dis-
cernibility functions, reducts, and dependency factors, all of which play a fun-
damental role in the reduction of knowledge. Figure 2.6 provides a schematic
diagram of a rough set. Let us now present some requisite preliminaries of
rough set theory.

An information system is a pair S =< U,A >, where U is a nonempty
finite set called the universe and A is a nonempty finite set of attributes {a}.
An attribute a in A can be regarded as a function from the domain U to some
value set Vn.
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Fig. 2.6 Lower and upper approximations in a rough set.

With every subset of attributes B C A, one can easily associate an equiv-
alence relation IB on U:

IB = {(x,y) € U : for every a e B, a(z) = a(y)}.

If X C t/, the sets {x 6 £7 : [x]B C X} and {z e t/ : [x]B H X 7^ 0}, where
[X]B denotes the equivalence class of the object x € U relative to IB, are called
the B-lower and B-upper approximations of X in «S and denoted by BX and
BX, respectively.

X (C U) is B- exact or B-definable in <S if BX = BX. It may be observed
that BX is the greatest B-definable set contained in X, and BX is the smallest
B-definable set containing X.

Let us consider, for example, an information system < U, {a} > where the
domain U consists of the students of a school, and there is a single attribute
a - that of "belonging to a class." Then U is partitioned by the classes of the
school.

Now consider the situation when an infectious disease has spread in the
school, and the authorities take the two following steps.

1. If at least one student of a class is infected, all the students of that class
are vaccinated. Let B denote the union of such classes.

2. If every student of a class is infected, the class is temporarily suspended.
Let B denote the union of such classes.

Then B C B. Given this information, let the following problem be posed:
• Identify the collection of infected students. Clearly, there cannot be a unique
answer. But any set I that is given as an answer must contain B and at least
one student from each class comprising B. In other words, it must have B as
its lower approximation and B as its upper approximation.
• I is then a rough concept or set in the information system < U, {a} >.
Further, it may be observed that any set /' given as another answer is roughly
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equal to /, in the sense that both are represented (characterized) by B and
B.

The effectiveness of the theory of rough sets has been investigated in the
domains of artificial intelligence and cognitive sciences, especially for repre-
sentation of and reasoning with vague and/or imprecise knowledge, data clas-
sification and analysis, machine learning, and knowledge discovery [56] . Their
role in data mining is elucidated in Section 2.6, with particular reference to
rough clustering in Section 6.5.4.

2.2.7 Wavelets

Application of wavelets have had a growing impact in signal and image pro-
cessing over the last two decades. But wavelet is by no means a new theory,
and it existed in mathematics since 1909 when Haar discovered the Haar
transform. Since then, mathematicians have been working on wavelets, and
"wavelet analysis" used to be called "atomic decomposition" for a long time
[57]. The wave in physics is defined as a disturbance propagated in media,
typically as an oscillating function of time or space such as a sinusoid. The
wavelet can be considered a snapshot of a wave oscillating within a short
window of time or space. As a result, mathematically, the wavelet can be
considered as a function which is both oscillating and localized.

Representation of a signal using sinusoids is very effective for stationary
signals, which are statistically predictable and are time-invariant in nature.
Wavelet representation is found to be very effective for nonstationary signals,
which are not statistically predictable and time-varying in nature.

Variation of intensity to form edges is a very important visual characteristic
of an image. From signal theoretic perspective, discontinuities of intensities
occur at the edges in any image and hence it can be prominently visualized
by the human eye. The time and frequency localization property of wavelets
makes it attractive for analysis of images because of discontinuities at the
edges.

Wavelets are functions generated from one single function called the mother
wavelet by dilations (scalings) and translations (shifts) in time (frequency)
domain. If the mother wavelet is denoted by ij)(t), the other wavelets tpa'b(t)
for a > 0 and a real number b can be represented as

(2'32)

where a and 6 represent the parameters for dilations and translations in the
time domain. The parameter a causes contraction in time domain when a < 1
and expansion when a > 1. In Fig. 2.7, we illustrate a mother wavelet and its
contraction and dilation.

We discuss further details of wavelet transformation and its properties in
Section 3.8.3, and we describe how it can be applied for efficient image com-
pression. Its application to data clustering is provided in Section 6.5.3.
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Fig. 2.7 (a) Mother wavelet V(0- (b) V> (*/«): 0 < a < 1. (c) ̂ (t/a): a > I.

2.3 ROLE OF FUZZY SETS IN DATA MINING

Fuzzy sets constitute the earliest and most widely reported constituent of soft
computing. As mentioned in Section 2.2.2, the modeling of imprecise and
qualitative knowledge as well as the transmission and handling of uncertainty
at various stages are possible through the use of fuzzy sets. In this section
we provide a glimpse of the available literature pertaining to the use of fuzzy
sets in data mining [3].

Knowledge discovery in databases is mainly concerned with identifying in-
teresting patterns and describing them in a concise and meaningful manner
[58]. Despite a growing versatility of knowledge discovery systems, there is
an important component of human interaction that is inherent to any pro-
cess of knowledge representation, manipulation, and processing. Fuzzy sets
are naturally inclined towards coping with linguistic domain knowledge and
producing more interpretable solutions.

The notion of interestingness, which encompasses several features such as
validity, novelty, usefulness, and simplicity, can be quantified through fuzzy
sets. Fuzzy dissimilarity of a discovered pattern with a user-defined vocabu-
lary has been used as a measure of this interestingness [59]. As an extension
to the above methodology, unexpectedness can also be defined in terms of a
belief system, where if a belief 6 is based on previous evidence £, then d(b\£)
denotes the degree of belief 6. In soft belief systems, a weight W{ is attached
to each belief 6j. The degree of a belief may be measured with conditional
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probability, Dempster-Shafer belief function, or frequency of the raw data.
Here, the interestingness of a pattern X relative to a belief system B and
evidence £ may be formally denned as

. f l -dfolOI. (2.33)

This definition of interestingness measures the amount by which the degrees
of belief change as a result of a new pattern X.

There is a growing indisputable role of fuzzy set technology in the realm of
data mining [60] . Various data browsers have been implemented using fuzzy
set theory [61]. Analysis of real- world data in data mining often necessitates
simultaneous dealing with different types of variables, namely, categorical,
symbolic, and numerical data. Pedrycz [62] discusses some constructive and
fuzzy set-driven computational vehicles of knowledge discovery and establishes
the relationship between data mining and fuzzy modeling. The role of fuzzy
sets is categorized below based on the different functions of data mining that
are modeled.

2.3.1 Clustering

Data mining aims at sifting through large volumes of data in order to reveal
useful information in the form of new relationships, patterns, or clusters, for
decision-making by a user [63]. Fuzzy sets support a focused search, speci-
fied in linguistic terms, through data. They also help discover dependencies
between the data in qualitative or semiqualitative format. In data mining,
one is typically interested in a focused discovery of structure and an eventual
quantification of functional dependencies existing therein. This helps pre-
vent searching for meaningless or trivial patterns in a database. Researchers
have developed fuzzy clustering algorithms for this purpose [64] . Russell and
Lodwick [65] have explored fuzzy clustering methods for mining telecommu-
nications customer and prospect databases to gain residential and business
customer market share.

Pedrycz has designed fuzzy clustering algorithms [66] using (a) contextual
information and (b) induced linguistic space, for better focusing of the search
procedure in KDD. Krishnapuram et al. [67] have developed a robust fuzzy
c-medoids algorithm for clustering Web data. Further details on these algo-
rithms are provided in Section 6.5.1.

2.3.2 Granular computing

Achieving focus is important in data mining because there are too many
attributes and values to be considered, which can result in combinatorial ex-
plosion. Most unsupervised data mining approaches try to achieve attribute
focus by first recognizing the most interesting features. Mazlack [68] suggests
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a converse approach of progressively reducing the dataset by partitioning and
eliminating the least important attributes to reduce intra-item dissonance
within the partitions. A soft focus is used to handle both crisp and imprecise
data. It works by progressive reduction of cognitive dissonance, leading to
an increase in useful information. The objective is to generate cohesive and
comprehensible information nuggets by sifting out uninteresting attributes. A
combined distance metric takes care of different types of attributes simulta-
neously, thus avoiding any taxonomic structure. Non-crisp values are handled
by granularization followed by partitioning.

Granular computing [69] is useful in finding meaningful patterns in data
by expressing and processing chunks of information (granules). These are re-
garded as essential entities in all cognitive pursuits geared toward establishing
meaningful patterns in data. Soft granules can be defined in terms of mem-
bership functions. Increased granularity reduces attribute distinctiveness, re-
sulting in loss of useful information, while finer grains lead to partitioning
difficulty. The concept of granular computing allows one to concentrate all
computational effort on some specific and problem-oriented subsets of a com-
plete database. It also helps split an overall computing effort into several
subtasks, leading to a modularization effect.

We deal with the classification aspect of granular computing in Section 5.4.6.
Modularization in soft computing, for data mining, is described in Section 8.3.

2.3.3 Association rules

An important area of data mining research deals with the discovery of asso-
ciation rules [70], which describe interesting association relationship among
different attributes. A boolean association involves binary attributes, a gen-
eralized association involves attributes that are hierarchically related, and a
quantitative association involves attributes that can take on quantitative or
categorical values. The use of fuzzy techniques has been considered to be one
of the key components of data mining systems because of their affinity with
human knowledge representation [71].

Wei and Chen [72] have mined generalized association rules with fuzzy
taxonomic structures. A crisp taxonomy assumes that a child belongs to its
ancestor with degree one. A fuzzy taxonomy is represented as a directed
acyclic graph, each of whose edges represents a fuzzy IS-A relationship with
degree // (0 < // < 1). The partial belonging of an item in a taxonomy is
taken into account while computing the degrees of support and confidence.

Au and Chan [73] utilize an adjusted difference between observed and ex-
pected frequency counts of attributes for discovering fuzzy association rules in
relational databases. Instead of dividing quantitative attributes into fixed in-
tervals, they employ linguistic terms to represent the revealed regularities and
exceptions. Here no user-supplied thresholds are required, and quantitative
values can be directly inferred from the rules. The linguistic representation
leads to the discovery of natural and more understandable rules. The algo-
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rithm allows one to discover both positive and negative rules, and can deal with
fuzzy class boundaries as well as missing values in databases. The use of fuzzy
techniques buries the boundaries of adjacent intervals of numeric quantities,
resulting in resilience to noises such as inaccuracies in physical measurements
of real life entities. The effectiveness of the algorithm was demonstrated on a
transactional database of a PBX system and a database concerning industrial
enterprises in mainland China.

We describe fuzzy association rules in greater detail in Section 7.10.

2.3.4 Functional dependencies

Fuzzy logic has been used for analyzing inference based on functional de-
pendencies (FDs), between variables, in database relations. Fuzzy inference
generalizes both imprecise (set-valued) and precise inference. Similarly, fuzzy
relational databases generalize their classical and imprecise counterparts by
supporting fuzzy information storage and retrieval [74]. FDs are interesting
from knowledge discovery standpoint since they allow one to express, in a
condensed form, some properties of the real world which are valid on a given
database. These properties can then be used in various applications such as
reverse engineering or query optimization. Bosc et al. [75] use a data mining
algorithm to extract or discover extended FDs, represented by gradual rules
composed of linguistic variables.

2.3.5 Data summarization

Summary discovery is one of the major components of knowledge discovery
in databases. This provides the user with comprehensive information for
grasping the essence from a large amount of information in a database. Fuzzy
set theory is also used for data summarization [76]. Typically, fuzzy sets are
used for an interactive top-down summary discovery process which utilizes
fuzzy IS-A hierarchies as domain knowledge.

Linguistic summaries of large sets of data are derived as linguistically quan-
tified propositions with a degree of validity [77]. This corresponds to the
preference criterion involved in the mining task. The system consists of a
summarizer (like young), a quantity in agreement (like most), and the truth
or validity (say, 0.7).

It is found that often the most interesting linguistic summaries are non-
trivial and human-consistent concepts, involving complicated combinations
of attributes. In practice, this cannot be generated automatically and hu-
man assistance or interaction is required. Kacprzyk and Zadrozny [78] have
developed FQUERY for an interactive linguistic summarization, using natu-
ral terms and comprehensible quantifiers. It supports various fuzzy elements
in queries, including interval attributes with membership for matching in a
fuzzy relation and importance coefficients. First the user has to formulate a
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set of linguistic summaries of interest. The system then retrieves records from
the database and calculates the validity of each summary. Finally, the most
appropriate linguistic summary is selected. The scheme has also been used
for fuzzy querying over the Internet, using browsers like Microsoft Explorer
or Netscape Navigator. The definition of fuzzy values, fuzzy relations, and
linguistic quantifiers is via Java applets.

Chiang et al. [79] have used fuzzy linguistic summary for mining time series
data. The system provides human interaction, in the form of a graphic display
tool, to help users premine a database and determine what knowledge could
be discovered. The model is used to predict the on-line utilization ranks of
different resources, including CPU and real storage.

2.3.6 Image mining

Recent increase in the size of multimedia information repositories, consisting
of mixed media data, has made content-based image retrieval (CBIR) an
active research area. Unlike traditional database techniques which retrieve
images based on exact matching of keywords, CBIR systems represent the
information content of an image by visual features such as color, texture, and
shape, and they retrieve images based on similarity of features. Frigui [80] has
developed an interactive and iterative image retrieval system that takes into
account the subjectivity of human perception of visual content. The feature
relevance weights are learned from the user's positive and negative feedback,
and the Choquet integral is used as a dissimilarity measure. The smooth
transition in the user's feedback is modeled by continuous fuzzy membership
functions. Medasani and Krishnapuram [81] have designed a fuzzy approach
to handle complex linguistic queries consisting of multiple attributes. Such
queries are usually more natural, user-friendly, and interpretable for image
retrieval. The degree to which an image satisfies an attribute is given by the
membership value of the feature vector, corresponding to the image, in the
membership function for the attribute. Fuzzy connectives are used to combine
the degrees of satisfaction of multiple attributes in a complex query, to arrive
at an overall degree of satisfaction while ranking images for retrieval.

Video as the format of computer-related material is becoming more and
more common these days, and many Web pages involve small pieces of movies
or video-clips or animation. Fuzzy time related queries are used in Ref. [82]
to retrieve information inside a video. The queries are handled using Zadeh's
principle of computing with words, which allows a human-friendly interface.
The system is implemented on a Java Search Engine.

Querying for a target image and retrieving it from Web and image databases,
based on image similarity, is presented in Ref. [83]. A fuzzy c-means algorithm
is used to cluster intrinsic image characteristics extracted from subregions of
the image. A measure of similarity between pairs of images is determined in
terms of the rotation-invariant attributes like color, texture, and shape. Color
is defined [84] in terms of the hue, saturation, and value representation of the
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average color of the pixel in the region. Texture is represented in terms of
the co-occurrence matrices in four directions involving Haralick's parameters
[85]. For each database image, the system calculates its attribute matrix and
does a whitening transformation before fuzzy clustering to store the represen-
tative centroids. When a target image is supplied, the system adopts a similar
procedure in order to retrieve the most similar image (in terms of the stored
centroid) from the database in response to a query.

In this section we have briefly summarized some research on soft computing-
based image mining. The traditional image mining techniques, based on
context-based image retrieval systems, have been covered in Section 9.3.

2.4 ROLE OF NEURAL NETWORKS IN DATA MINING

Neural networks were earlier thought to be unsuitable for data mining be-
cause of their inherent black-box nature. No information was available from
them in symbolic form, suitable for verification or interpretation by humans.
However, recent investigations have concentrated on extracting the embed-
ded knowledge in trained networks in the form of symbolic rules [25]. Unlike
fuzzy sets, the main contribution of neural nets towards data mining stems
from rule extraction and clustering [3].

2.4.1 Rule extraction

In general, the primary input to a connectionist rule extraction algorithm is
a representation of a trained (layered) neural network, in terms of its nodes,
links, and sometimes the dataset. One or more hidden and output units are
used to automatically derive the rules, which may later be combined and
simplified to arrive at a more comprehensible rule set. These rules can also
provide new insights into the application domain. The use of neural nets helps
in (i) incorporating parallelism and (ii) tackling optimization problems in the
data domain. The models are usually suitable in data-rich environments.

Typically, a network is first trained to achieve the required accuracy rate.
Redundant connections of the network are then removed using a pruning
algorithm. The link weights and activation values of the hidden units in the
network are analyzed, and classification rules are generated [25, 86]. Further
details on rule generation can be obtained in Section 8.2.

2.4.2 Rule evaluation

Here we provide some quantitative measures to evaluate the performance of
the generated rules [87]. This relates to the goodness of fit chosen for the
rules. Let the (i, j)th element of an / x I matrix, n»j, indicate the number of
objects (patterns) actually belonging to class i, but classified as class j.
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• Accuracy. It is the correct classification percentage, provided by the
rules on a test set defined as

^ * 100,
Ki

where n, is equal to the number of objects in class i such that Uic of
these are correctly classified.

• User's accuracy: It gives a measure of the confidence that a classifier
attributes to a region as belonging to a class. If raj objects are found to
be classified into class z, then the user's accuracy (U) is defined as

U = ̂  * 100.ni
In other words, it denotes the level of purity associated with a region.

• Kappa: The coefficient of agreement, kappa, measures the relationship
of beyond chance agreement to expected disagreement. It uses all the
cells in the confusion matrix, not just the diagonal elements. The kappa
value for class i (Ki) is defined as

where N indicates the total number of data samples. The estimate of
kappa is the proportion of agreement, after chance agreement is removed
from consideration. The numerator and denominator of overall kappa
are obtained by summing the respective numerators and denominators
of Ki separately over all classes.

• Fidelity. It is measured as the percentage of the test set for which
network and the rulebase output agree [87].

• Confusion: This measure quantifies the goal that the "confusion should
be restricted within minimum number of classes." Let n^ be the mean
of all nij for i^j. Then [87]

Canf =
L

for an / class problem. The lower the value of confusion, the smaller the
number of classes between which confusion occurs.

Coverage: The percentage of examples from a test set for which no rules
are fired is used as a measure of the uncovered region. A rulebase having
a smaller uncovered region is superior.
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• Rulebase size: This is measured in terms of the number of rules. The
lower its value, the more compact the rulebase. This leads to better
understandability.

• Computational complexity. This is measured in terms of the CPU time
required.

• Confidence: The confidence of the rules is defined by a confidence factor
cf. We use [87]

cfj = inf (ZiWji-Oj)^ (2 ̂
j: all nodes in the path jLiiWji

where Wji is the zth incoming link weight to node j and Oj is its threshold.

2.4.3 Clustering and self-organization

One of the big challenges to data mining is the organization and retrieval of
documents from archives. Kohonen et al. [88] have demonstrated the utility
of a huge self-organizing map (SOM) with more than one million nodes to
partition a little less than seven million patent abstracts, where the documents
are represented by 500-dimensional feature vectors. Very large text collections
have been automatically organized into document maps that are suitable for
visualization and intuitive exploration of the information space. Vesanto et al.
[89] employ a stepwise strategy by partitioning the data with a SOM, followed
by its clustering. Alahakoon et al. [90] perform hierarchical clustering of
SOMs, based on a spread factor which is independent of the dimensionality
of the data. Further details of these algorithms are provided in Section 6.5.2.

Shalvi and De Claris [91] have designed a data mining technique, combining
Kohonen's self-organizing neural network with data visualization, for cluster-
ing a set of pathological data containing information regarding the patients'
drugs, topographies (body locations) and morphologies (physiological abnor-
malities). Koenig [92] has combined SOM and Sammon's nonlinear mapping
for reducing the dimension of data representation for visualization purposes.

2.4.4 Regression

Neural networks have also been used for a variety of classification and regres-
sion tasks [93]. Time series prediction has been attempted by Lee and Liu [94].
They have employed a neural oscillatory elastic graph matching model, with
hybrid radial basis functions, for tropical cyclone identification and tracking.

2.4.5 Information retrieval

The SOM has been used for information retrieval [95]. A map of text docu-
ments arranged using the SOM is organized in a meaningful manner, so that
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items with similar content appear at nearby locations of the two-dimensional
map display, such that the data is clustered. This results in an approximate
model of the data distribution in the high-dimensional document space. A
document map is automatically organized for browsing and visualization, and
it is successfully utilized in speeding up document retrieval while maintaining
high perceived quality. The objective of the search is to locate a small number
Nf of best documents in the order of goodness corresponding to a query. The
strategy is outlined below.

• Indexing phase: Apply the SOM to partition a document collection of
D documents into K subsets or clusters, representing each subset by its
centroid.

• Search phase: For a given query,

— Pre-select: select the best subsets, based on comparison with the
centroids, and collect the documents in these subsets until K' doc-
uments (K1 > N') are obtained.

— Refine: perform an exhaustive search among the K' prospective
documents and return the N' best ones in the order of goodness.

A collection of 1460 document vectors was organized on a 10 x 15 SOM, using
the WEBSOM principles, so that each map unit could contain an average of
10 documents.

2.5 ROLE OF GENETIC ALGORITHMS IN DATA MINING

GAs are adaptive, robust, efficient and global search methods, suitable in
situations where the search space is large. They optimize a fitness function,
corresponding to the preference criterion of data mining, to arrive at an op-
timal solution using certain genetic operators. Knowledge discovery systems
have been developed using genetic programming concepts [96, 97]. The MAS-
SON system [98], where intentional information is extracted for a given set of
objects, is popular. The problem addressed is to find common characteristics
of a set of objects in an object-oriented database. Genetic programming is
used to automatically generate, evaluate, and select object-oriented queries.
GAs are also used for several other purposes like fusion of multiple datatypes
in multimedia databases, as well as automated program generation for mining
multimedia data [99].

However, the literature in the domain of GA-based data mining is not as
rich as that of fuzzy sets. We provide below a categorization of few such
interesting systems based on the functions modeled [3].
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2.5.1 Regression

Besides discovering human-interpretable patterns, data mining also encom-
passes prediction [58], where some variables or attributes in the database are
used to determine unknown or future values of other variables of interest. The
traditional weighted average or linear multiregression models for prediction re-
quire a basic assumption that there is no interaction among the attributes.
GAs, on the other hand, are able to handle attribute interaction in a better
manner. Xu et al. [100] have designed a multi-input single-output system
using a nonlinear integral. An adaptive GA is used for learning the nonlinear
multiregression from a set of training data.

Noda et al. [101] use GAs to discover interesting rules in a dependence mod-
eling task, where different rules can predict different goal attributes. Gener-
ally, attributes with high information gain are good predictors of a class when
considered individually. However attributes with low information gain could
become more relevant when attribute interactions are taken into account.
This phenomenon is associated with rule interestingness. The degree of in-
terestingness of the consequent is computed based on the relative frequency
of the value being predicted by it. In other words, the rarer the value of a
goal attribute, the more interesting a rule it predicts. The authors attempt
to discover (or mine) a few interesting rules (knowledge nuggets) instead of
a large set of accurate (but not necessarily interesting) rules. The concept of
interestingness has been represented using Eq. (2.33). It is also discussed in
Section 7.4, with reference to association rule mining.

2.5.2 Association rules

Multiobjective GAs deal with finding the optimal solutions to problems having
multiple objective functions or constraints. The solution to this is a Pareto
optimal set of solutions, such that there exists no solution in the search space
which dominates any member of this set. These are used for rule mining, which
often involves a large search space with huge number of attributes and records.
A global search is performed with multiple objectives, involving a combination
of factors like predictive accuracy, comprehensibility, and interestingness.

Rules are typically encoded in two ways, namely, the Michigan approach
(each individual encoding a single rule) and the Pittsburgh approach (each
individual encoding a set of rules). The antecedent and consequent parts
are encoded separately. To avoid generation of invalid chromosomes during
crossover, some alignment is necessary in the position of the different at-
tribute values. While a categorical attribute is represented by its value, a
continuous-valued attribute is encoded by its binary representation. Selec-
tion and mutation operators are the same as in standard GAs. Although
conventional crossover may be used, one can also resort to generalized or spe-
cialized crossover operators that involve logical OR/AND operations over the
appropriate segment of the parent chromosomes.
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Lopes et al. [102] evolve association rules of IF c THEN p type, which provide
a high degree of accuracy and coverage. While the accuracy of a rule mea-
sures its degree of confidence, its coverage is interpreted as the comprehensive
inclusion of all the records that satisfy the rule. Hence

(2.37)
1^1 i-n-i-H'i i-n

and

Coverage = , 'fn^* , (2.38)

are defined. Note that other quantitative measures for rule evaluation have
been discussed in Section 2.4.2, with reference to neural networks.

2.6 ROLE OF ROUGH SETS IN DATA MINING

The theory of rough sets [55] has proved to be useful in a variety of KDD
processes. It offers mathematical tools to discover hidden patterns in data;
therefore its importance, as far as data mining is concerned, can in no way be
overlooked [3]. A fundamental principle of a rough set-based learning system
is to discover redundancies and dependencies between the given features of
a problem to be classified. It approximates a given concept from below and
from above, using lower and upper approximations.

A rough set learning algorithm can be used to obtain a set of rules in
IF-THEN form from a decision table. Every decision rule has two conditional
probabilities associated with it, namely, certainty and coverage factors. These
are closely related to the fundamental concepts of lower and upper approxi-
mations [103]. The rough set method provides an effective tool for extracting
knowledge from databases. Here one first creates a knowledge base, classifying
objects and attributes within the created decision tables. Then a knowledge
discovery process is initiated to remove some undesirable attributes. Finally
the data dependency is analyzed, in the reduced database, to find the minimal
subset of attributes called reduct.

Rough set applications to data mining generally proceed along the following
directions.

1. Decision rule induction from attribute value table [104]-[106]. Most of
these methods are based on generation of discernibility matrices and
reducts.

2. Data filtration by template generation [107]. This mainly involves ex-
tracting elementary blocks from data based on equivalence relation. Ge-
netic algorithms are also sometimes used in this stage for searching, so
that the methodologies can be used for large datasets.
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Besides these, reduction of memory and computational requirements for rule
generation, and working on dynamic databases [106] are also considered.

Some of the rough set-based systems developed for data mining include
(i) the KDD-R system based on the VPRS (Variable Precision Rough Set)
model [108] and (ii) the rule induction system based on LERS (Learning from
Examples based on Rough Set Theory) [109]. LERS has been extended in
Ref. [110] to handle missing attributes using the closest fit.

Document clustering has been recognized as a means for improving the
efficiency and effectiveness of information retrieval and text mining. A non-
hierarchical document clustering algorithm [111], based on a tolerance rough
set model, has been applied to large document databases characterized by a
few index terms or keywords. Unlike hierarchical algorithms, requiring time
and space complexities of O(N3) and O(N2) respectively (with N being the
total number of terms in a textual database), this approach requires complex-
ities of O(NlogN) and O(N). The concept of upper approximation in rough
sets makes it possible to exploit the semantic relationship between a few index
terms in a large text document.

2.7 ROLE OF WAVELETS IN DATA MINING

Role of wavelets in different aspects of data mining is gaining significant impor-
tance. Today it has become a very powerful signal processing tool in different
application areas such as image processing, compression, image indexing and
retrieval, digital libraries, image clustering, and databases [112]-[116].

Spatial data mining aims to handle the huge amounts of spatial data ob-
tained from satellite images, medical equipments, Geographic Information
Systems (GIS), image database exploration, etc. The objective is to auto-
mate the process of understanding spatial data by concise representation and
reorganization, to accommodate data semantics. Clustering is often required
at hierarchical levels of coarseness, grouping the spatial objects at different
levels of accuracy. This gives rise to the concept of multiresolution represen-
tation of an image. Wavelets [5] are found to be very useful in appropriately
modeling such situations because of the nonstationary property of the image
signals formed around the edges and correlation amongst the image pixels.

Wavelet transform is a signal processing technique that decomposes a signal
or image into different frequency subbands at number of levels and multiple
resolutions. In every level of decomposition, the high-frequency subband cap-
tures the discontinuities in the signals - for example, the edge information in
an image. The low-frequency subband is nothing but a subsampled version of
the original image, with similar statistical and spatial properties as the origi-
nal signal. As a result, the low-frequency subband can be further decomposed
into higher levels of resolution, and it helps in representing spatial objects in
different coarser levels of accuracy in multiresolution subbands. This property
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led to the application of wavelet transforms in edge detection, object isolation,
object detection, medical image fusion, and others [117].

One has to apply the wavelet transform on the feature space to find dense
regions or clusters. Wavelet transform is not a single uniquely defined mathe-
matical function like the Discrete Cosine Transform. There are many wavelet
basis functions available in the literature. The wavelet transform is usually
represented as a pair of Finite Impulse Response (FIR) filters, namely, the
high-pass filter and the low-pass filter. A one-dimensional signal s can be
filtered by convolving the filter coefficients Ck of such a filter with the signal
values

M M

Si = ̂ cksi+k- —, (2.39)
fc=i

as an example, where M is the number of coefficients in the filter and s is the
result of the convolution. The Cohen-Daubechies-Feauveau (2,2) biorthogonal
wavelet is one of the most commonly used wavelet transform in data clustering
applications. It is a hat-shaped filter that emphasizes regions where points
cluster, while suppressing the weaker information along their boundary. This
makes it easier to find the connected components in the transformed space.

Wavelets have been used for efficiently clustering large datasets [116]. This
is discussed in Section 6.5.3. We provide further details on wavelet transfor-
mation and its application to image compression in Section 3.8.3.

2.8 ROLE OF HYBRIDIZATIONS IN DATA MINING

Let us first consider neuro-mzzy hybridization in the context of data mining
[3]. The rule generation aspect of neural networks is utilized to extract more
natural rules from fuzzy neural networks [118], incorporating the better in-
terpretability and understandability of fuzzy sets. The fuzzy MLP [119] and
fuzzy Kohonen network [120] have been used for linguistic rule generation and
inferencing. Here the input, besides being in quantitative, linguistic, or set
forms, or a combination of these, can also be incomplete. Output decision is
provided in terms of class membership values. The models are capable of

• Inferencing based on complete and/or partial information

• Querying the user for unknown input variables that are key to reaching
a decision

• Producing justification for inferences in the form of IF-THEN rules.

The connection weights and node activation values of the trained network are
used in the process. A certainty factor determines the confidence in an output
decision. Figure 2.8 gives an overall view of the various stages involved in the
process of inferencing and rule generation.
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Fig. 2.8 Block diagram of inferencing and rule generation phases.

Zhang et al. [121] have designed a granular neural network to deal with
numerical-linguistic data fusion and granular knowledge discovery in databases.
The network is capable of learning internal granular relations between input
and output and predicting new relations. Low-level granular data can be
compressed to generate high-level granular knowledge in the form of rules.

A neuro-fuzzy knowledge-based network by Mitra et al. [122] is capable
of generating both positive and negative rules in linguistic form to justify
any decision reached. In the absence of positive information regarding the
belonging of a pattern to class Ck, the complementary information is used for
generating negative rules. The network topology is automatically determined,
in terms of the a priori class information and distribution of pattern points
in the feature space, followed by refinement using growing and/or pruning of
links and nodes.

Banerjee et al. [28] have used a rough-neuro-fuzzy integration to design a
knowledge-based system, where the theory of rough sets is utilized for extract-
ing domain knowledge. The extracted crude domain knowledge is encoded
among the connection weights. Rules are generated from a decision table
by computing relative reducts. The network topology is automatically deter-
mined and the dependency factors of these rules are encoded as the initial
connection weights. The hidden nodes model the conjuncts in the antecedent
part of a rule, while the output nodes model the disjuncts.

A promising direction in mining a huge dataset is to (a) partition it, (b)
develop classifiers for each module, and (c) combine the results. A modular
approach has been pursued [87, 123, 124] to combine the knowledge-based
rough-fuzzy MLP subnetworks or modules generated for each class, using
GAs. An /-class classification problem is split into I two-class problems. Fig-
ure 2.9 depicts the knowledge flow for the entire process for / = 2. Dependency
rules, shown on the top left corner of the figure, are extracted directly from
real-valued attribute table consisting of fuzzy membership values by adap-
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Fig. 2.9 Knowledge flow in a modular rough-neuro-fuzzy-genetic system.
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tively applying a threshold. The nature of the decision boundaries, at each
stage, are depicted on the right side of the figure. The topology of the sub-
networks are initially mapped using the dependency rules. Evolution using
GA leads to partial refinement. The final network (represented as a concate-
nation of the subnetworks) is evolved using a GA with restricted mutation
operator, in a novel rough-neuro-fuzzy-genetic framework. The divide-and-
conquer strategy, followed by evolutionary optimization, is found to enhance
the performance of the network. The method is described in further detail in
Section 8.3.

George and Srikanth [125] have used a fuzzy-genetic integration, where
GAs are applied to determine the most appropriate data summary. Kiem and
Phuc [126] have developed a rough-neuro-genetic hybridization for discovering
conceptual clusters from a large database.

2.9 CONCLUSIONS AND DISCUSSION

Current research in data mining mainly focuses on the discovery algorithm
and visualization techniques. There is a growing awareness that, in practice,
it is easy to discover a huge number of patterns in a database where most of
these patterns are actually obvious, redundant, and useless or uninteresting
to the user. To prevent the user from being overwhelmed by a large number
of uninteresting patterns, techniques are needed to identify only the useful or
interesting patterns and present them to the user.

Soft computing methodologies, involving fuzzy sets, neural networks, ge-
netic algorithms, rough sets, wavelets, and their hybridizations, have recently
been used to solve data mining problems. They strive to provide approximate
solutions at low cost, thereby speeding up the process. A categorization has
been provided based on the different soft computing tools and their hybridiza-
tions used, the mining function implemented, and the preference criterion
selected by the model.

Fuzzy sets, which constitute the oldest component of soft computing, are
suitable for handling the issues related to understandability of patterns, in-
complete or noisy data, mixed media information, and human interaction and
can provide approximate solutions faster. They have been mainly used in
clustering, discovering association rules and functional dependencies, summa-
rization, time series analysis, Web applications, and image retrieval.

Neural networks are suitable in data-rich environments and are typically
used for extracting embedded knowledge in the form of rules, quantitative
evaluation of these rules, clustering or self-organization, classification, regres-
sion, Web mining, and information retrieval. They have an advantage over
other types of machine learning algorithms for scaling [127].

Genetic algorithms provide efficient search algorithms to select a model,
from mixed media data, based on some preference criterion or objective func-
tion. They have been employed in regression, discovering association rules
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and Web mining. Rough sets are suitable for handling different types of un-
certainty in data, and they have been mainly utilized for extracting knowledge
in the form of rules.

Hybridizations typically enjoy the generic and application-specific merits
of the individual soft computing tools that they integrate. Data mining func-
tions modeled by such systems include rule extraction, data summarization,
clustering, incorporation of domain knowledge, and partitioning. It is to be
noted that the notion of partitioning (i.e., the modular approach) provides an
effective direction for scaling up algorithms and speeding up convergence.

An efficient integration of soft computing tools, according to Zadeh's Com-
putational Theory of Perceptions [128], is needed. Feature evaluation and
dimensionality reduction help improve prediction accuracy. Some recent work
in this direction are available in Refs. [129]-[131]. Other issues, requiring at-
tention, include (a) the choice of metrics and evaluation techniques to handle
dynamic changes in data and (b) a quantitative evaluation of system perfor-
mance.

Recently, several commercial data mining tools have been developed based
on soft computing methodologies. These include

• Data Mining Suite, using fuzzy logic;

• Braincell, Cognos 4Thought and IBM Intelligent Miner for Data, using
neural networks; and

• Nuggets, using GAs.

REFERENCES

1. L. A. Zadeh, "Fuzzy logic, neural networks, and soft computing," Com-
munications of the ACM, vol. 37, pp. 77-84, 1994.

2. S. K. Pal and S. Mitra, Neuro-fuzzy Pattern Recognition: Methods in Soft
Computing. New York: John Wiley & Sons, 1999.

3. S. Mitra, S. K. Pal, and P. Mitra, "Data mining in soft computing frame-
work: A survey," IEEE Transactions on Neural Networks, vol. 13, pp. 3-
14, 2002.

4.1. Daubechies, "The wavelet transform, time-frequency localization and
signal analysis," IEEE Transactions on Information Theory, vol. 36, pp. 961-
1005, 1990.

5. I. Daubechies, Ten Lectures on Wavelets. CBMS, Philadelphia: Society
for Industrial and Applied Mathematics, 1992.



REFERENCES 79

6. R. Heider, "Troubleshooting CFM 56-3 engines for the Boeing 737 - using
CBR and data-mining," Lecture Notes in Computer Science, vol. 1168,
pp. 512-523, 1996.

7. J. Furnkranz, J. Petrak, and R. Trappl, "Knowledge discovery in interna-
tional conflict databases," Applied Artificial Intelligence, vol. 11, pp. 91-
118, 1997.

8. J. R. Quinlan, C4-5: Programs for Machine Learning. San Mateo, CA:
Morgan Kaufmann, 1993.

9. S. K. Pal and A. Skowron, eds., Rough Fuzzy Hybridization: A New Trend
in Decision Making. Singapore: Springer-Verlag, 1999.

10. L. A. Zadeh, "Fuzzy sets," Information and Control, vol. 8, pp. 338-353,
1965.

11. L. A. Zadeh, "The concept of a linguistic variable and its application to
approximate reasoning: Part 1, 2, and 3," Information Sciences, vol. 8,
8, 9, pp. 199-249, 301-357, 43-80, 1975.

12. L. A. Zadeh, "Fuzzy sets as a basis for a theory of possibility," Fuzzy Sets
and Systems, vol. 1, pp. 3-28, 1978.

13. L. A. Zadeh, "The role of fuzzy logic in the management of uncertainty
in expert systems," Fuzzy Sets and Systems, vol. 11, pp. 199-227, 1983.

14. H. J. Zimmermann, Fuzzy Sets, Decision Making and Expert Systems.
Boston, MA: Kluwer Academic Publishers, 1987.

15. G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Appli-
cations. Englewood Cliffs, NJ: Prentice-Hall, 1995.

16. S. Haykin, Neural Networks: A Comprehensive Foundation. New York:
Macmillan College Publishing Co., 1994.

17. J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the Theory of
Neural Computation. Reading, MA: Addison-Wesley, 1994.

18. D. E. Rumelhart and J. L. McClelland, eds., Parallel Distributed Process-
ing: Explorations in the Microstructures of Cognition, vol. 1. Cambridge,
MA: MIT Press, 1986.

19. T. Kohonen, Self-Organization and Associative Memory. Berlin: Springer-
Verlag, 1989.

20. J. M. Zurada, Introduction to Artificial Neural Systems. New York: West
Publishing Company, 1992.

21. D. R. Hush and B. G. Home, "Progress in supervised neural networks,"
IEEE Signal Processing Magazine, pp. 8-39, January 1993.



80 SOFT COMPUTING

22. D. O. Hebb, The Organization of Behaviour. New York: John Wiley &:
Sons, 1949.

23. W. S. McCulloch and W. Pitts, "A logical calculus of the idea immanent
in nervous activity," Bulletin of Mathematical Biophysics, vol. 5, pp. 115-
133, 1943.

24. G. G. Towell and J. W. Shavlik, "Extracting refined rules from knowledge-
based neural networks," Machine Learning, vol. 13, pp. 71-101, 1993.

25. A. B. Tickle, R. Andrews, M. Golea, and J. Diederich, "The truth will
come to light: Directions and challenges in extracting the knowledge em-
bedded within trained artificial neural networks," IEEE Transactions on
Neural Networks, vol. 9, pp. 1057-1068, 1998.

26. L. M. Fu, "Knowledge-based connectionism for revising domain theories,"
IEEE Transactions on Systems, Man, and Cybernetics, vol. 23, pp. 173-
182, 1993.

27. G. G. Towell and J. W. Shavlik, "Knowledge-based artificial neural net-
works," Artificial Intelligence, vol. 70, pp. 119-165, 1994.

28. M. Banerjee, S. Mitra, and S. K. Pal, "Rough fuzzy MLP: Knowledge en-
coding and classification," IEEE Transactions on Neural Networks, vol. 9,
pp. 1203-1216, 1998.

29. F. Rosenblatt, "The perceptron: A probabilistic model for information
storage and organization in the brain," Psychological Review, vol. 65,
pp. 386-408, 1958.

30. F. Rosenblatt, Principles of Neurodynamics, Perceptrons and the Theory
of Brain Mechanisms. Washington, D.C.: Spartan Books, 1961.

31. M. Minsky and S. Papert, Perceptrons: An Introduction to Computational
Geometry. Cambridge, MA: MIT Press, 1969.

32. K. L. Oehler and R. M. Gray, "Combining image compression and classifi-
cation using vector quantization," IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 17, pp. 461-473, 1995.

33. J. Moody and C. J. Darken, "Fast learning in networks of locally-tuned
processing units," Neural Computation, vol. 1, pp. 281-294, 1989.

34. D. R. Hush, B. Home, and J. M. Salas, "Error surfaces for multilayer per-
ceptrons," IEEE Transactions on Systems, Man, and Cybernetics, vol. 22,
pp. 1152-1161, 1993.

35. C. T. Lin and C. S. George Lee, Neural Fuzzy Systems-A Neuro-Fuzzy
Synergism to Intelligent Systems. Englewood Cliffs, NJ: Prentice-Hall,
1996.



REFERENCES 81

36. W. Pedrycz, Computational Intelligence: An Introduction. Boca Raton,
NY: CRC Press, 1998.

37. Y. Hayashi and J. J. Buckley, "Approximations between fuzzy expert sys-
tems and neural networks," International Journal of Approximate Rea-
soning, vol. 10, pp. 63-73, 1994.

38. J. S. R. Jang and C. T. Sun, "Functional equivalence between radial basis
function networks and fuzzy inference systems," IEEE Transactions on
Neural Networks, vol. 4, pp. 156-159, 1993.

39. E. H. Mamdani and S. Assilian, "An experiment in linguistic synthe-
sis with a fuzzy logic controller," International Journal of Man Machine
Studies, vol. 7, pp. 1-13, 1975.

40. T. Takagi and M. Sugeno, "Fuzzy identification of systems and its appli-
cation to modeling and control," IEEE Transactions on Systems, Man,
and Cybernetics, vol. 15, pp. 116-132, 1985.

41. J. J. Buckley and T. Feuring, Fuzzy and Neural: Interactions and Appli-
cations. Studies in Fuzziness and Soft Computing, Heidelberg: Physica-
Verlag, 1999.

42. S. C. Lee and E. T. Lee, "Fuzzy neural networks," Mathematical Bio-
sciences, vol. 23, pp. 151-177, 1975.

43. S. K. Pal and S. Mitra, "Multi-layer perceptron, fuzzy sets and classi-
fication," IEEE Transactions on Neural Networks, vol. 3, pp. 683-697,
1992.

44. J. K. Keller and D. J. Hunt, "Incorporating fuzzy membership functions
into the perceptron algorithm," IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 7, pp. 693-699, 1985.

45. J. M. Keller, R. R. Yager, and H. Tahani, "Neural network implementation
of fuzzy logic," Fuzzy Sets and Systems, vol. 45, pp. 1-12, 1992.

46. J. R. Jang, "ANFIS: Adaptive-network-based fuzzy inference system,"
IEEE Transactions on Systems, Man, and Cybernetics, vol. 23, pp. 665-
685, 1993.

47. S. Mitra, "Fuzzy MLP based expert system for medical diagnosis," Fuzzy
Sets and Systems, vol. 65, pp. 285-296, 1994.

48. D. Nauck, F. Klawonn, and R. Kruse, Foundations of Neuro-Fuzzy Sys-
tems. Chichester, England: John Wiley & Sons, 1997.

49. J. M. Keller, R. Krishnapuram, and F. C. -H. Rhee, "Evidence aggre-
gation networks for fuzzy logic inference," IEEE Transactions on Neural
Networks, vol. 3, pp. 761-769, 1992.



82 SOFT COMPUTING

50. S. Mitra and S. K. Pal, "Logical operation based fuzzy MLP for classifi-
cation and rule generation," Neural Networks, vol. 7, pp. 353-373, 1994.

51. G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds, and D. B.
Rosen, "Fuzzy ARTMAP: A neural network architecture for incremental
supervised learning of analog multidimensional maps," IEEE Transactions
on Neural Networks, vol. 3, pp. 698-713, 1992.

52. A. Ghosh, N. R. Pal, and S. K. Pal, "Self-organization for object ex-
traction using multilayer neural network and fuzziness measures," IEEE
Transactions on Fuzzy Systems, vol. 1, pp. 54-68, 1993.

53. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning. Reading, MA: Addison-Wesley, 1989.

54. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolutionary
Programs. Berlin: Springer-Veriag, 1994.

55. Z. Pawlak, Rough Sets, Theoretical Aspects of Reasoning about Data. Dor-
drecht: Kluwer Academic, 1991.

56. R. Slowinski, ed., Intelligent Decision Support, Handbook of Applications
and Advances of the Rough Sets Theory. Dordrecht: Kluwer Academic,
1992.

57. Y. Meyer, Wavelets: Algorithms and Applications. Philadelphia: SIAM -
Society for Industrial and Applied Mathematics, 1993.

58. U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, eds.,
Advances in Knowledge Discovery and Data Mining. Menlo Park, CA:
AAAI/MIT Press, 1996.

59. B. Liu, W. Hsu, L. F. Mun, and H. Y. Lee, "Finding interesting patterns
using user expectation," IEEE Transactions on Knowledge and Data En-
gineering, vol. 11, pp. 817-832, 1999.

60. R. R. Yager, "Database discovery using fuzzy sets," International Journal
of Intelligent Systems, vol. 11, pp. 691-712, 1996.

61. J. F. Baldwin, "Knowledge from data using fuzzy methods," Pattern
Recognition Letters, vol. 17, pp. 593-300, 1996.

62. W. Pedrycz, "Fuzzy set technology in knowledge discovery," Fuzzy Sets
and Systems, vol. 98, pp. 279-290, 1998.

63. P. Piatetsky-Shapiro and W. J. Frawley, eds., Knowledge Discovery in
Databases. Menlo Park, CA: AAAI/MIT Press, 1991.

64.1. B. Turksen, "Fuzzy data mining and expert system development," in
Proceedings of IEEE International Conference on Systems, Man, and Cy-
bernetics (San Diego, CA), pp. 2057-2061, October 1998.



REFERENCES 83

65. S. Russell and W. Lodwick, "Fuzzy clustering in data mining for telco
database marketing campaigns," in Proceedings ofNAFIPS 99 (New York),
pp. 720-726, June 1999.

66. W. Pedrycz, "Conditional fuzzy c-means," Pattern Recognition Letters,
vol. 17, pp. 625-632, 1996.

67. R. Krishnapuram, A. Joshi, O. Nasraoui, and L. Yi, "Low complexity
fuzzy relational clustering algorithms for web mining," IEEE Transactions
on Fuzzy Systems, vol. 9, pp. 595-607, 2001.

68. L. J. Mazlack, "Softly focusing on data," in Proceedings of NAFIPS 99,
(New York), pp. 700-704, June 1999.

69. L. A. Zadeh, "Toward a theory of fuzzy information granulation and its
centrality in human reasoning and fuzzy logic," Fuzzy Sets and Systems,
vol. 19, pp. 111-127, 1997.

70. R. Agrawal, T. Imielinski, and A. Swami, "Mining association rules be-
tween sets of items in large databases," in Proceedings of 1993 ACM SIG-
MOD International Conference on Management of Data (Washington,
B.C.), pp. 207-216, May 1993.

71. A. Maeda, H. Ashida, Y. Taniguchi, and Y. Takahashi, "Data mining
system using fuzzy rule induction," in Proceedings of IEEE International
Conference on Fuzzy Systems FUZZ IEEE 95 (Yokohama, Japan), pp. 45-
46, March 1995.

72. Q. Wei and G. Chen, "Mining generalized association rules with fuzzy
taxonomic structures," in Proceedings ofNAFIPS 99 (New York), pp. 477-
481, June 1999.

73. W. H. Au and K. C. C. Chan, "An effective algorithm for discovering
fuzzy rules in relational databases," in Proceedings of IEEE International
Conference on Fuzzy Systems FUZZ IEEE 98 (Alaska), pp. 1314-1319,
May 1998.

74. J. Hale and S. Shenoi, "Analyzing FD inference in relational databases,"
Data and Knowledge Engineering, vol. 18, pp. 167-183, 1996.

75. P. Bosc, O. Pivert, and L. Ughetto, "Database mining for the discovery
of extended functional dependencies," in Proceedings of NAFIPS 99 (New
York), pp. 580-584, June 1999.

76. D. H. Lee and M. H. Kim, "Database summarization using fuzzy ISA
hierarchies," IEEE Transactions on Systems Man and Cybernetics. Part
B-Cybernetics, vol. 27, pp. 68-78, 1997.



84 SOFT COMPUTING

77. R. R. Yager, "On linguistic summaries of data," in Knowledge Discovery
in Databases (W. Frawley and G. Piatetsky-Shapiro, eds.), pp. 347-363,
Menlo Park, CA: AAAI/MIT Press, 1991.

78. J. Kacprzyk and S. Zadrozny, "Data mining via linguistic summaries of
data: an interactive approach," in Proceedings of IIZUKA 98 (Fukuoka,
Japan), pp. 668-671, October 1998.

79. D. A. Chiang, L. R. Chow, and Y. F. Wang, "Mining time series data
by a fuzzy linguistic summary system," Fuzzy Sets and Systems, vol. 112,
pp. 419-432, 2000.

80. H. Frigui, "Adaptive image retrieval using the fuzzy integral," in Proceed-
ings ofNAFIPS 99 (New York), pp. 575-579, June 1999.

81. S. Medasani and R. Krishnapuram, "A fuzzy approach to complex lin-
guistic query based image retrieval," in Proceedings of NAFIPS 99 (New
York), pp. 590-594, June 1999.

82. M. Detyniecki, C. Seyrat, and R. Yager, "Interacting with web video
objects," in Proceedings of the 18th International Conference of the North
American Fuzzy Information Processing Society (NAFIPS'99), pp. 914-
917, 1999.

83. A. Filho, G. L. A. Mota, M. M. B. R. Vellasco, and M. A. C. Pacheco,
"Query by image similarity using a fuzzy logic approach," in Proceed-
ings of Fourth International Conference on Computational Intelligence
and Multimedia Applications (ICCIMA 2001), pp. 389-394, 2001.

84. R. C. Gonzalez and R. E. Woods, Digital Image Processing. Reading,
MA: Addison-Wesley, 1992.

85. R. M. Haralick, K. Shanmugam, and I. Dinstein, "Textural features for
image classification," IEEE Transactions on Systems, Man, and Cyber-
netics, vol. 3, pp. 610-621, 1973.

86. H. J. Lu, R. Setiono, and H. Liu, "Effective data mining using neural net-
works," IEEE Transactions on Knowledge and Data Engineering, vol. 8,
pp. 957-961, 1996.

87. S. K. Pal, S. Mitra, and P. Mitra, "Rough Fuzzy MLP: Modular evolution,
rule generation and evaluation," IEEE Transactions on Knowledge and
Data Engineering, vol. 15, pp. 14-25, 2003.

88. T. Kohonen, S. Kaski, K. Lagus, J. Salojarvi, J. Honkela, V. Paatero, and
A. Saarela, "Self organization of a massive document collection," IEEE
Transactions on Neural Networks, vol. 11, pp. 574-585, 2000.

89. J. Vesanto and E. Alhoniemi, "Clustering of the self-organizing map,"
IEEE Transactions on Neural Networks, vol. 11, pp. 586-600, 2000.



REFERENCES 85

90. D. Alahakoon, S. K. Halgamuge, and B. Srinivasan, "Dynamic self or-
ganizing maps with controlled growth for knowledge discovery," IEEE
Transactions on Neural Networks, vol. 11, pp. 601-614, 2000.

91. D. Shalvi and N. De Claris, "Unsupervised neural network approach to
medical data mining techniques," in Proceedings of IEEE International
Joint Conference on Neural Networks (Alaska), pp. 171-176, May 1998.

92. A. Koenig, "Interactive visualization and analysis of hierarchical neural
projections for data mining," IEEE Transactions on Neural Networks,
vol. 11, pp. 615-624, 2000.

93. V. Ciesielski and G. Palstra, "Using a hybrid neural/expert system for
database mining in market survey data," in Proceedings Second Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD-96)
(Portland, OR), p. 38, AAAI Press, August 2-4, 1996.

94. R. S. T. Lee and J. N. K. Liu, "Tropical cyclone identification and track-
ing system using integrated neural oscillatory elastic graph matching and
hybrid RBF network track mining techniques," IEEE Transactions on
Neural Networks, vol. 11, pp. 680-689, 2000.

95. K. Lagus, "Text retrieval using self-organized document maps," Neural
Processing Letters, vol. 15, pp. 21-29, 2002.

96.1. W. Flockhart and N. J. Radcliffe, "A genetic algorithm-based approach
to data mining," in The Second International Conference on Knowledge
Discovery and Data Mining (KDD-96) (Portland, OR), p. 299, AAAI
Press, August 2-4 1996.

97. M. L. Raymer, W. F. Punch, E. D. Goodman, and L. A. Kuhn, "Genetic
programming for improved data mining: An application to the biochem-
istry of protein interactions," in Genetic Programming 1996: Proceedings
of the First Annual Conference (Stanford University, CA), pp. 375-380,
MIT Press, 28-31 July 1996.

98. T. Ryu and C. F. Eick, "MASSON: discovering commonalties in col-
lection of objects using genetic programming," in Genetic Programming
1996: Proceedings of First Annual Conference (Stanford University, CA),
pp. 200-208, MIT Press, July 28-31 1996.

99. A. Teller and M. Veloso, "Program evolution for data mining," The In-
ternational Journal of Expert Systems, vol. 8, pp. 216-236, 1995.

100. K. Xu, Z. Wang, and K. S. Leung, "Using a new type of nonlinear integral
for multi-regression: An application of evolutionary algorithms in data
mining," in Proceedings of IEEE International Conference on Systems,
Man, and Cybernetics (San Diego, CA), pp. 2326-2331, October 1998.



86 SOFT COMPUTING

101. E. Noda, A. A. Preitas, and H. S. Lopes, "Discovering interesting predic-
tion rules with a genetic algorithm," in Proceedings of IEEE Congress on
Evolutionary Computation CEC 99 (Washington, D.C.), pp. 1322-1329,
July 1999.

102. C. Lopes, M. Pacheco, M. Vellasco, and E. Passes, "Rule-evolver: An
evolutionary approach for data mining," in Proceedings of RSFDGrC '99
(Yamaguchi, Japan), pp. 458-462, November 1999.

103. J. F. Peters and A. Skowron, "A rough set approach to knowledge discov-
ery," International Journal of Intelligent Systems, vol. 17, pp. 109-112,
2002.

104. T. Mollestad and A. Skowron, "A rough set framework for data mining of
prepositional default rules," Lecture Notes in Computer Science, vol. 1079,
pp. 448-457, 1996.

105. A. Skowron, "Extracting laws from decision tables-a rough set approach,"
Computational Intelligence, vol. 11, pp. 371-388, 1995.

106. N. Shan and W. Ziarko, "Data-based acquisition and incremental modifi-
cation of classification rules," Computational Intelligence, vol. 11, pp. 357-
370, 1995.

107. L. Polkowski and A. Skowron, Rough Sets in Knowledge Discovery 1 and
2. Heidelberg: Physica-Verlag, 1998.

108. W. Ziarko and N. Shan, "KDD-R: A comprehensive system for knowl-
edge discovery in databases using rough sets," in Proceedings of Third
International Workshop on Rough Sets and Soft Computing RSSC '94,
pp. 164-173, 1994.

109. J. W. Grzymala-Busse, "LERS-A knowledge discovery system," in Rough
Sets in Knowledge Discovery 2, Applications, Case Studies and Software
Systems (L. Polkowski and A. Skowron, eds.), pp. 562-565, Heidelberg:
Physica-Verlag, 1998.

110. J. W. Grzymala-Busse, W. J. Grzymala-Busse, and L. K. Goodwin, "A
closest fit approach to missing attribute values in preterm birth data," in
Proceedings of RSFDGrC '99 (Yamaguchi, Japan), pp. 405-413, Novem-
ber 1999.

111. T. B. Ho and N. B. Nguyen, "Nonhierarchical document clustering based
on a tolerance rough set model," International Journal of Intelligent Sys-
tems, vol. 17, pp. 199-212, 2002.

112. S. G. Mallat, "A theory for multiresolution signal decomposition: The
wavelet representation," IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 11, pp. 674-693, 1989.



REFERENCES 87

113. M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, "Image coding
using wavelet transform," IEEE Transactions on Image Processing, vol. 1,
pp. 205-220, 1992.

114. F. Wang and Q. J. Zhang, "Incorporating functional knowledge into neu-
ral networks," in Proceedings of IEEE International Conference on Neural
Networks (Houston, TX), pp. 266-269, 1997.

115. J. Z. Wang, G. Wiederhold, O. Firchein, and S. Wei, "Content-based
image indexing and searching using Daubechies' wavelets," International
Journal of Digital Libraries, vol. 1, pp. 311-328, 1998.

116. G. Sheikholeslami, S. Chatterjee, and A. Zhang, "WaveCluster: A multi-
resolution clustering approach for very large spatial databases," in Pro-
ceedings of 1998 International Conference on Very Large Data Bases
(VLDB '98) (New York), pp. 428-439, August 1998.

117. R. M. Rao and A. S. Bopardikar, Wavelet Transforms: Introduction to
Theory and Applications. Massachusetts: Addison Wesley, 1998.

118. S. Mitra and Y. Hayashi, "Neuro-fuzzy rule generation: Survey in soft
computing framework," IEEE Transactions on Neural Networks, vol. 11,
pp. 748-768, 2000.

119. S. Mitra and S. K. Pal, "Fuzzy multi-layer perceptron, inferencing and
rule generation," IEEE Transactions on Neural Networks, vol. 6, pp. 51-
63, 1995.

120. S. Mitra and S. K. Pal, "Fuzzy self organization, inferencing and rule
generation," IEEE Transactions on Systems, Man and Cybernetics, Part
A: Systems and Humans, vol. 26, pp. 608-620, 1996.

121. Y. Q. Zhang, M. D. Fraser, R. A. Gagliano, and A. Kandel, "Granular
neural networks for numerical-linguistic data fusion and knowldege dis-
covery," IEEE Transactions on Neural Networks, vol. 11, pp. 658-667,
2000.

122. S. Mitra, R. K. De, and S. K. Pal, "Knowledge-based fuzzy MLP for clas-
sification and rule generation," IEEE Transactions on Neural Networks,
vol. 8, pp. 1338-1350, 1997.

123. S. Mitra, P. Mitra, and S. K. Pal, "Evolutionary modular design of
rough knowledge-based network using fuzzy attributes," Neurocomputing,
vol. 36, pp. 45-66, 2001.

124. P. Mitra, S. Mitra, and S. K. Pal, "Staging of cervical cancer with
soft computing," IEEE Transactions on Biomedical Engineering, vol. 47,
pp. 934-940, 2000.



88 SOFT COMPUTING

125. R. George and R. Srikanth, "Data summarization using genetic algo-
rithms and fuzzy logic," in Genetic Algorithms and Soft Computing (F. Her-
rera and J. L. Verdegay, eds.), pp. 599-611, Heidelberg: Physica-Verlag,
1996.

126. H. Kiem and D. Phuc, "Using rough genetic and Kohonen's neural net-
work for conceptual cluster discovery in data mining," in Proceedings of
RSFDGrC '99 (Yamaguchi, Japan), pp. 448-452, November 1999.

127. Y. Bengio, J. M. Buhmann, M. Embrechts, and J. M. Zurada, "Introduc-
tion to the special issue on neural networks for data mining and knowledge
discovery," IEEE Transactions on Neural Networks, vol. 11, pp. 545-549,
2000.

128. L. A. Zadeh, "A new direction in AI: Towards a computational theory of
perceptions," AI Magazine, vol. 22, pp. 73-84, 2001.

129. S. Bengio and Y. Bengio, "Taking on the curse of dimensionality in joint
distribution using neural networks," IEEE Transactions on Neural Net-
works, vol. 11, pp. 550-557, 2000.

130. R. Kewley, M. Embrechta, and C. Breneman, "Data strip mining for the
virtual design of pharmaceuticals with neural networks," IEEE Transac-
tions on Neural Networks, vol. 11, pp. 668-679, 2000.

131. C. K. Shin, S. J. Yu, U. T. Yun, and H. K. Kim, "A hybrid approach
of neural network and memory based learning to data mining," IEEE
Transactions on Neural Networks, vol. 11, pp. 637-646, 2000.



3
Multimedia Data

Compression

3.1 INTRODUCTION

Multimedia data mining is a growing area of interest, and its advancement
will have impact on how we store, access, and process different datatypes
for different application areas in the near future. Data mining usually deals
with large datasets and involves the access of relevant information from them.
Hence it becomes necessary to apply data compression in large datasets, in
order to reduce storage requirements for practical data processing applica-
tions, particularly in the area of multimedia applications. The development
of efficient compression techniques will continue to be a design challenge and
an area of interest to researchers.

Although the basic premises of data compression offer promises to poten-
tially improve the efficiency of data mining techniques, not much attention
has been focused in this direction by researchers. In our view, data compres-
sion has been neglected by the data mining community. However, limited
efforts have been made to reduce high-dimensional data to lower dimensions
for its compact representation and better visualization. Classical data mining
techniques deal with mining information from databases represented in the
canonical form. Access of data in the compressed domain and development of
data compression techniques particularly suitable for data mining, whereby it
would be possible to efficiently index the compressed data for fast search and
access from large databases, remains a challenge. This will immensely benefit
Web mining as well since huge volumes of data are distributed worldwide, all
over the Web, in compressed form.

89
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In order to address the challenging problem of mining data in the com-
pressed domain, it becomes essential to understand the principles behind cur-
rent data compression techniques. Researchers can build on this knowledge
to propose new data mining techniques in the compressed domain, thereby
influencing future multimedia applications through mining.

The main advantage of compression is that it reduces the data storage
requirements. It also offers an attractive approach to reduce the communica-
tion cost in transmitting high volumes of data over long-haul links via higher
effective utilization of the available bandwidth in the data links. This sig-
nificantly aids in reducing the cost of communication, due to the data rate
reduction. Thereby, data compression also increases the quality of multime-
dia presentation through limited bandwidth communication channels. As a
result, the audience can experience rich quality signals for audio-visual data
representation.

For example, because of the application of sophisticated compression tech-
nologies applied in multimedia data, we can receive toll quality audio at the
other side of the globe through the good old telecommunication channels at
a much better price as compared to that of a decade ago. Because of the sig-
nificant progress in image compression techniques, a single 6-MHz broadcast
television channel can carry HDTV signals to provide better-quality audio
and video at higher rates and enhanced resolution, without additional band-
width requirements. Due to the reduced data rate offered by the compression
techniques, the computer network and Internet usage is becoming more and
more image and graphics friendly, rather than being just data and text cen-
tric phenomena. In short, high-performance compression has created new
opportunities of creative applications such as digital library, digital archival,
video teleconferencing, telemedicine, digital entertainment, to name a few.
Researchers need to pay significant attention to develop techniques for min-
ing of multimedia data in the compressed domains, in order to further excel
in the usage of data mining technologies in multimedia applications.

The organization of this chapter is as follows. Section 3.2 introduces the
basic concepts from information theory. Sections 3.3-3.5 provide details on
the classification of compression algorithms, a data compression model, and
the different measures of compression performance. Section 3.6 presents some
source coding algorithms. This is followed by a treatise on Principal Com-
ponent Analysis in Section 3.7. Principles of still image compression are de-
scribed in Section 3.8. The JPEG image compression standard, JPEG loss-
less coding algorithm, and baseline JPEG compression are explained in Sec-
tions 3.9-3.11. Text compression is elaborated upon in Section 3.12. Finally,
Section 3.13 concludes the chapter.
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3.2 INFORMATION THEORY CONCEPTS

The Mathematical Theory of Communication [l]-[4], also called the Informa-
tion Theory, was pioneered by Claude E. Shannon in 1948. It is considered
to be the theoretical foundation of data compression research.

Representation of data is a combination of information and redundancy
[1]. Information is the portion of data that must be preserved permanently
in its original form in order to correctly interpret the meaning or purpose of
the data. Redundancy, on the other hand, is that portion of data that can be
removed when it is not needed or can be reinserted to interpret the data when
needed. Data compression is essentially a redundancy reduction technique.
The redundancy in data representation is reduced in such a way that it can
be subsequently reinserted to recover the original data, through a process
called decompression of this data. In literature, sometimes data compression
is referred to as coding, while decompression is termed as decoding.

Usually development of a data compression scheme can be broadly divided
into two phases, namely, modeling and coding. In the modeling phase, infor-
mation about redundancy that exists in the data is extracted and described
in a model. This enables us to determine how the actual data differs from
the model, and it allows us to encode the difference in the coding phase. Ob-
viously, a data compression algorithm becomes more effective if the model
is closer to the characteristics of the data generating process which we often
call the source. The model can be obtained by empirical observation of the
statistics of the data generated by the source. In an empirical sense, any
information-generating process can be described as a source that emits a se-
quence of symbols chosen from a finite set of all possible symbols generated by
the source. This finite set of symbols is often called an alphabet. For example,
we can think of this text as being generated by a source with an alphabet
containing all the ASCII characters.

3.2.1 Discrete memoryless model and entropy

If the symbols produced by the information source are statistically indepen-
dent to each other, the source is called a discrete memoryless source. This
is described by its source alphabet A = {ai,a2,.. . ,a/yr} and the associ-
ated probabilities of occurrence P — {p(ai),p(a2),... ,p(fljv)} of the symbols
a\, 02, . . . , O>N in A.

The definition of discrete memoryless source model provides us a very pow-
erful concept of quantification of average information content per symbol of
the source and entropy of the data. The concept of "entropy" was first used by
physicists as a thermodynamic parameter to measure the degree of "disorder"
or "chaos" in a thermodynamic or molecular system. In statistical sense, we
can view this as a measure of the degree of "surprise" or "uncertainty." In an
intuitive sense, it is reasonable to assume that the appearance of a less prob-
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able event (symbol) gives us more surprise and hence we expect that it might
carry more information. On the contrary, the more probable event (symbol)
will cany less information because it was expected more. Note an analogy to
the concept of surprising or interesting rules explained in Section 7.4.

With the above intuitive explanation, we can comprehend Shannon's defini-
tion of the relation between the source symbol probabilities and corresponding
codes. The amount of information content, 7(aO, in a source symbol a*, in
terms of its associated probability of occurrence p(aj) is

/(Oj) = Iog2 -T—- = - Iog2p(0i).

The base 2 in the logarithm indicates that the information is expressed in
binary units or bits. In terms of binary representation of the codes, a symbol
a,i that is expected to occur with probability p(at) is best represented in
approximately — Iog2p(aj) bits. As a result, a symbol with higher probability
of occurrence in a message is coded using a fewer number of bits.

If we average the amount of information content over all the possible sym-
bols of the discrete memoryless source, we can find the average amount of
information content per source symbol from the discrete memoryless source.
This is expressed as

N N

E = J^p(o0/(o0 = -$^p(a01og2p(oO, (3-1)
t=i 1=1

and is popularly known as "entropy" in information theory. Hence entropy
is the expected length of a binary code over all possible symbols in a dis-
crete memoryless source. Note the analogy of this definition with Eq. (5.1),
expressing entropy in the context of pattern classification.

The concept of entropy is very powerful. In "stationary" systems, where
the probabilities of occurrence of the source symbols are fixed, it provides a
bound for the compression that can be achieved. This is a very convenient
measure of the performance of a coding system.

3.2.2 Noiseless Source Coding Theorem

The Noiseless Source Coding Theorem by Shannon [1] establishes the mini-
mum average code word length per source symbol that can be achieved, which
in turn provides an upper bound on the achievable compression losslessly. The
Noiseless Source Coding Theorem is also known as Shannon's first theorem.
This is one of the major source coding results in information theory [l]-[3].

If the data generated from a discrete memoryless source A is considered to
be grouped together in blocks of n symbols, to form an n-extended source, then
the new source An has Nn possible symbols {«{}, with probability P(oO =
P(aj1)P(ai2)- • -P(airi), i = 1,2, • • • , Nn. By deriving the entropy of the new
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n-extended source, it can be proven that

E(An] = nE(A),

where E(A) is the entropy of the original source A. Let us now consider
encoding the blocks of n source symbols, at a time, into binary codewords.
For any € > 0, it is possible to construct a codeword for the block in such a
way that the average number of bits per original source symbol, Z, satisfies

E(A) <L< E(A) + e. (3.2)

The left-hand inequality must be satisfied for any uniquely decodable code for
the block of n source symbols.

The Noiseless Source Coding Theorem states that any infinitely long se-
quence of source symbols emanating from a discrete memoryless source can
be losslessly encoded with a code whose average number of bits per source
symbol is arbitrarily close to, but not less than, the source entropy E in bits.
Hence this theorem provides us the intuitive (statistical) yardstick to measure
the information emerging from a source.

3.2.2.1 Example 1: Let us consider a discrete memoryless source with
alphabet A\ = {a, /3,7,6} having associated probabilities p(a) = 0.65, p(/3) =
0.20, p(i] = 0.10, and p(S) = 0.05, respectively. The entropy of this source is
E = -(0.65 Iog2 0.65 + 0.20 Iog2 0.20 + 0.10 Iog2 0.10 + 0.05 Iog2 0.05), which is
approximately 1.42 bits/symbol. As a result, a 2000-symbols-long datum can
be represented using approximately 2820 bits.

Knowing something about the structure of the data sequence often helps
in reducing the entropy estimation of the source. Let us consider that the
numeric data sequence generated by a source of alphabet AI = {0,1, 2,3} is
£> = 0 1 1 2 3 3 3 3 3 3 3 3 3 2 2 2 3 3 3 3 , as an example. The probability
of appearance of the symbols in alphabet A% are p(Q) = 0.05, p ( l ) = 0.10,
p(2) = 0.20, and p(3) = 0.65, respectively, as in alphabet A\. Hence the
estimated entropy of the sequence D is E = 1.42 bits per symbol. If we
assume that correlation exists between two consecutive samples in this data
sequence, we can reduce this correlation by simply subtracting a sample by its
previous sample to generate the residual values Ti = Si — Si_i for each sample
5j. Based on this assumption of the model, the sequence of residuals of the
original data sequence is 5 = 0 1 0 1 1 0 0 0 0 0 0 0 0 - 1 0 0 1 0 0 0 , consisting
of three symbols in a modified alphabet A-i = {—1,1,0}. The probability of
occurrence of the symbols in the new alphabet A are p(—1) = 0.05, p ( l ) = 0.2,
and p(0) = 0.75, respectively, as computed by the number of occurrences in
the residual sequence. The estimated entropy of the transformed sequence
is E = -(0.05 Iog2 0.05 -I- 0.21og20.2 + 0.75 Iog2 0.75) = 0.992, that is, 0.992
bits/symbol. Hence the data sequence can be represented with fewer number
of bits, resulting in compression.
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3.3 CLASSIFICATION OF COMPRESSION ALGORITHMS

In an abstract sense, we can describe data compression as a method that takes
an input data D and generates a shorter representation of the data c(D) with
fewer number of bits compared to that of D. The reverse process is called
decompression, and it takes the compressed data c(D) and generates or recon-
structs the data D' as shown in Fig. 3.1. Sometimes the compression (coding)
and decompression (decoding) systems together are called a "CODEC," as
marked by the broken box in Fig. 3.1. The reconstructed data D' could be
identical to the original data D or it could be an approximation of the original
data D, depending upon the reconstruction requirements. If the reconstructed
data D' is an exact replica of the original data D, we call the algorithm ap-
plied to compress D and decompress c(D) to be lossless. Otherwise, we call
the algorithms to be lossy. Hence as far as the reversibility of the original
data is concerned, the data compression algorithms can be broadly classified
into two categories, namely, "lossless" and "lossy."

Fig. 3.1 Block diagram of CODEC.

Usually we need to apply lossless data compression techniques on text data
or scientific data. For example, we cannot afford to compress the electronic
copy of this textbook using a lossy compression technique. It is expected
that we should be able to reconstruct the same text after the decompression
process. A small error in the reconstructed text can have a completely different
meaning. We do not expect the sentence "You should not delete this file" in
a text to change to "You should now delete this file" as a result of some error
introduced by a lossy compression or decompression algorithm. Similarly, if
we compress a huge ASCII file containing a program written in "C" language,
for example, we expect to get back the same "C" code after decompression
because of obvious reasons.

The lossy compression techniques are usually applicable to data where high
fidelity of reconstructed data is not required, for perception, by the human
perceptual system. Examples of such types of data are image, video, graph-
ics, speech, audio, etc. Some image compression applications may, however,
require the compression scheme to be lossless; that is, each pixel of the de-
compressed image should be exactly identical to the original one. Medical
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imaging is an example of such an application, where compressing the digital
radiographs with a lossy scheme could be a disaster if it has to compromise
with the diagnostic accuracy. Similar observations are true for astronomical
images of galaxies and stars.

3.4 A DATA COMPRESSION MODEL

A model of a typical data compression system can be described using the block
diagram shown in Fig. 3.2. A data compression system mainly constitutes
three major steps, namely, (i) removal or reduction in data redundancy, (ii)
reduction in entropy, and (iii) entropy encoding.

Fig. 3.2 A data compression model.

The redundancy in data may appear in different forms. For example, the
neighboring pixels in a typical image are very much spatially correlated to
each other. By correlation we mean that the pixel values are very similar
in the non-edge smooth regions of the image [5, 6]. This correlation of the
neighboring pixels is termed as spatial correlation. In case of moving pictures,
the consecutive frames could be almost similar, with or without minor dis-
placement, if the motion is slow. The composition of words or sentences in a
natural text follows some context model, based on the grammar being used.
Similarly, the records in a typical numeric database may have some sort of
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relationship amongst the atomic entities which comprise each record in the
database. There are rhythms and pauses in regular intervals in any natural
audio or speech data. All these redundancies in data representation can be
reduced in order to achieve potential compression.

Removal or reduction in data redundancy is typically achieved by trans-
forming the original data from one form of representation to another, in order
to decorrelate the spatial information redundancies present in the data. The
popular techniques used for spatial redundancy reduction are prediction of
data samples using some model, transformation of the original data from spa-
tial to frequency domain using methods such as Discrete Cosine Transform
(DCT), decomposition of the original dataset into different subbands as in
Discrete Wavelet Transformation (DWT), etc. In principle, this spatial re-
dundancy reduction potentially yields more compact representation of the
information in the original dataset, in terms of fewer transformed coefficients
or equivalent, and hence makes it amenable to represent the data with fewer
number of bits in order to achieve compression.

The next major step in a lossy data compression system is "quantization."
Quantization techniques are applied on the decorrelated or transformed data,
in order to further reduce the number of symbols or coefficients, by masking
nonsignificant parts and preserving only the meaningful information in the
data. This leads to reduction in entropy of the data, and hence makes it
further amenable to compression by allocating less number of bits for trans-
mission or storage. The reduction in entropy is achieved by dropping non-
significant information in the transformed data and preserving fewer signifi-
cant symbols only. For example, in case of an image transformed in frequency
domain, the high-frequency transformed coefficients can be dropped because
the human vision system is not sensitive to these. By preserving a smaller
number of transformed coefficients in the meaningful low-frequency range, we
can maintain the fidelity of the reconstructed image. The nature and amount
of quantization dictate the quality of the reconstructed data. The quantized
coefficients are then losslessly encoded, using some entropy encoding scheme
to compactly represent the quantized data for storage or transmission. Since
the entropy of the quantized data is less than that of the original one, it can
be represented by a smaller number of bits compared to the original data set
and hence we achieve compression.

The decompression system is just an inverse process to reconstruct the
data.

3.5 MEASURES OF COMPRESSION PERFORMANCE

As in any other system, the metrics of performance of a data compression
algorithm is an important criteria for its selection. The performance measures
of data compression algorithms can be looked at from different perspectives
depending upon the application requirements, namely, amount of compression



MEASURES OF COMPRESSION PERFORMANCE 97

achieved, objective and subjective quality of the reconstructed data, relative
complexity of the algorithm, speed of execution, etc. We explain some of these
below.

3.5.1 Compression ratio and bits per sample

The most popular performance measure of a data compression algorithm is
the 'compression ratio1. It is defined as the ratio of the number of bits in
the original data to the number of bits in the compressed data. Consider a
gray scale image of size 256 x 256. If each pixel is represented by a single
byte, the image needs 65536 bytes of storage. If the compressed version of
the image can be stored in 4096 bytes, the compression ratio achieved by the
compression algorithm will be 16:1.

A variation of the compression ratio is ''bits per sample1. This metric indi-
cates the average number of bits to represent a single sample of the data -
for example, bits per pixel for image coding. In case of an image, each pixel
represents a sample. On the other hand, in case of a text file, each sample
corresponds to a character in the text. If 65536 pixels of an image are com-
pressed to 4096 bytes, we can say that the compression algorithm achieved
0.5 bits per pixel on the average. Hence the bits per sample can be measured
by the ratio of the number of bits of a single uncompressed sample to the
compression ratio.

3.5.2 Quality metric

The quality or fidelity metric is important for lossy compression algorithms
used in video, image, voice, etc., because here the reconstructed data differs
from the original one and the human perceptual system is the ultimate judge
of the reconstructed quality. For example, if there is no perceivable difference
between the reconstructed data and the original version, then the compression
algorithm can be claimed to have achieved a very high quality or fidelity. The
difference of the reconstructed data from the original one is called the distor-
tion, and a lower distortion implies a higher quality of the reconstructed data.
A quality measure can either be very subjective based on human perception,
or be objectively defined using mathematical or statistical evaluation.

3.5.2.1 Subjective quality metric: There is no universally accepted mea-
sure for the subjective quality metrics. Often the subjective quality metric
is defined as the mean observer score (MOS). Sometimes it is also called the
mean opinion score. There are different statistical ways to compute MOS. In
one of the simplest methods, a statistically significant number of observers
are randomly chosen to evaluate the visual quality of the reconstructed im-
ages. All the images are compressed and decompressed by the same algorithm.
Each observer assigns a numeric score to each reconstructed image based on
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his or her perception of quality of the image, say, within a range 1-5 to de-
scribe the quality of the image, with 5 and 1 being the best and worst quality,
respectively. The average of the scores assigned by all the observers is the
MOS, and it is considered as a viable subjective metric if all the observers
are unbiased and evaluate the images under the same viewing or experimental
conditions. There are different variations of this approach to calculate MOS,
namely, absolute comparison, paired comparison, blind evaluation, etc.

The techniques of measurement of MOS could well be different for different
perceptual data. For example, the methodology to evaluate the subjective
quality of a still image could be entirely different from that for video or voice
data.

3.5.2.2 Objective quality metric: There is no universally accepted mea-
sure for the objective quality of data compression algorithms either. The most
widely used objective quality metrics are root-mean-squared error (RMSE),
signal-to-noise ratio (SNR), and peak signal-to-noise ratio (PSNR). If /
is an M x N image and 7 is the corresponding reconstructed image after
compression and decompression, RMSE is calculated as

RMSE =
\

M N

MN (3-3)

where i,j refer to the pixel position in the image. The SNR in decibel unit
(dB) is expressed as SNR =

20 log
i IUMOC, i \Di=iUy=i |/(*»J')- /(*»

(3.4)
In case of an 8-bit image, the corresponding PSNR in dB is computed as

(3.5)

where 255 is the maximum possible pixel value in 8 bits.
It should be noted that a lower RMSE (or equivalently, higher SNR or

PSNR) does not necessarily always indicate a higher subjective quality. In
fact these objective error metrics do not always correlate well with the subjec-
tive quality metrics. There are many cases where the PSNR of a reconstructed
image can be reasonably high, but the subjective quality is really bad when
visualized by human eyes. Hence the choice of the objective or subjective met-
rics, to evaluate a compression and decompression algorithm, often depends
upon the application criteria.

Similar objective quality metrics are used for audio and speech signals as
well.
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3.5.3 Coding complexity

When the computational requirement to implement the CODEC in a particu-
lar computing platform is an important criterion, we often consider the coding
complexity and computation time of a compression algorithm to be a perfor-
mance measure. Implementation of a compression algorithm using special
purpose digital signal processor (DSP) architectures is common in communi-
cation systems. In portable systems, the coding complexity is an important
criterion from the perspective of low-power hardware implementation. The
computational requirement is usually measured in terms of the number of
arithmetic operations and the memory requirement. Usually, the number of
arithmetic operations is described by MOPS (millions of operations per sec-
ond). But in compression literature, the term MIPS (millions of instructions
per second) is often used to measure the compression performance of a specific
computing engine's architecture.

3.6 SOURCE CODING ALGORITHMS

From the information theoretic perspective, source coding can mean both
lossless and lossy compression. However, researchers often use it to indicate
lossless coding only. In the signal processing community, source coding is used
to mean source model based coding. In this section, we describe some basic
source coding algorithms such as Run-length coding and Huffman coding in
greater detail.

3.6.1 Run-length coding

Run-length coding is a simple approach to source coding when there exists
a long run of the same data, in a consecutive manner, in a dataset. As an
example, the data d = '6 6 6 6 6 6 0 9 0 5 5 5 5 5 5 2 2 2 2 2 2 1 3 4
4 4 4 4 ...' contains long runs of 6's, 5's 2's 4's, etc. Rather than coding
each sample in the run individually, the data can be represented compactly
by simply indicating the value of the sample and the length of its run when
it appears. For example, if a portion of an image is represented by "5 5 5 5 5
5 5 19 19 19 19 19 19 19 19 19 19 19 19 0 0 0 0 0 0 0 0 8 23 23 23 23 23 23,"
this can be run-length encoded as (5 7) (19 12) (0 8) (8 1) (23 6). For ease of
understanding, we have shown a pair in each parenthesis. Here the first value
represents the pixel, while the second indicates the length of its run.

In some cases, the appearance of runs of symbols may not be very apparent.
But the data can possibly be preprocessed in order to aid run-length coding.
Consider the data d = '26 29 32 35 38 41 44 50 56 62 68 78 88 98 108 118
116 114 112 110 108 106 104 102 100 98 96'. We can simply preprocess this
data by taking the sample difference e(i) = d(i) — d(i — 1), to produce the
processed data e = '26 3 3 3 3 3 3 6 6 6 6 10 10 10 10 10 -2 -2 -2 -2 -2
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—2 —2 —2 —2 —2 —2'. This preprocessed data can now easily be run-length
encoded as (26 1) (3 6) (6 4) (10 5) (-2 11). A variation of this technique is
applied in the baseline JPEG standard for still picture compression [7]. The
same technique can be applied to numeric databases as well.

On the other hand, binary (black and white) images, such as facsimile,
usually consist of runs of O's or I's. As an example, if a segment of a binary
image is represented as d =
"0000000001111111111100000000000000011100000000000001001111111111,"
it can be compactly represented as c(d) = (9, 11, 15, 3, 13, 1, 2, 10) by simply
listing the lengths of alternate runs of O's and I's. While the original binary
data d requires 65 bits for storage, its compact representation c(d) requires 32
bits only under the assumption that each length of run is being represented by
4 bits. The early facsimile compression standard (CCITT Group 3, CCITT
Group 4) algorithms have been developed based on this principle [8].

3.6.2 Huffman coding

In 1952, D. A. Huffman [9] invented a coding technique to produce the shortest
possible average code length, given the source symbol set and the associated
probability of occurrence of the symbols. The Huffman coding technique is
based on the following two observations regarding optimum prefix codes.

• The more frequently occurring symbols can be allocated with shorter
codewords than the less frequently occurring symbols.

• The two least frequently occurring symbols will have codewords of the
same length, and they differ only in the least significant bit.

The average of the length of these codes is closed to the entropy of the source.
Let us assume that there are m source symbols {si, S2> • • • , sm} with asso-
ciated probabilities of occurrence {pi, P2, • . . , pm}- Using these probability
values, we can generate a set of Huffman codes of the source symbols. The
Huffman codes can be mapped into a binary tree, popularly known as the
Huffman tree. We describe below the algorithm to generate the Huffman
codes of the source symbols.

1. Produce a set N = {Ni, N2, • • • , Nm} of m nodes as leaves of a binary
tree. Assign a node Ni with the source symbol Sj, i = 1, 2, ..., m, and
label the node with the associated probability p,.
(Example: As shown in Fig. 3.3, we start with eight nodes AT0, NI,
N2, N$, N±, N$, N&, N? corresponding to the eight source symbols o, 6,
c, d, e, /, 0, /i, respectively. Probability of occurrence of each symbol is
indicated in the associated parentheses.)

2. Find the two nodes with the two lowest probability symbols from the
current node set, and produce a new node as a parent of these two nodes.
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Fig. 3.3 Huffman tree construction for Example 2.

(Example: Prom Fig. 3.3 we find that the two lowest probability sym-
bols g and d are associated with nodes NQ and N$, respectively. The
new node N8 becomes the parent of N3 and N6.)

3. Label the probability of this new parent node as the sum of the proba-
bilities of its two child nodes.
(Example: The new node N8 is now labeled by probability 0.09, which
is the sum of the probabilities 0.06 and 0.03 of the symbols d and g
associated with the nodes N3 and N&, respectively.)

4. Label the branch of one child node of the new parent node as 1 and
branch of the other child node as 0.
(Example: The branch N3 to N8 is labeled by 1 and the branch N6 to
NS is labeled by 0.)

5. Update the node set by replacing the two child nodes with smallest
probabilities by the newly generated parent node. If the number of
nodes remaining in the node set is greater than 1, go to Step 2.
(Example: The new node set now contains the nodes NO, AT1? N%, 7V4,
N5, N7, N8 and the associated probabilities are 0.30, 0.10, 0.20, 0.09,
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0.07, 0.15, 0.09, respectively. Since there are more than one node in
the node set, Steps 2 to 5 are repeated and the nodes 7V9, AT10, TVu,
Ni2> ./Vis, Wi4 are generated in the next six iterations, until the node
set consists of AT14 only.)

6. Traverse the generated binary tree from the root node to each leaf node
AT*, i = 1, 2, . . . , m, to produce the codeword of the corresponding
symbol s», which is a concatenation of the binary labels (0 or 1) of the
branches from the root to the leaf node.
(Example: The Huffman code of symbol h is "110," formed by con-
catenating the binary labels of the branches 7V14 to JVi3, JV13 to NU and

to N7.)

Table 3.1 Huffman code table

Symbol

a
6
c
d
e
f
9
h

Probability

0.30
0.10
0.20
0.06
0.09
0.07
0.03
0.15

Huffman
code
10
001
01
11111
000
1110
11110
110

3.6.2.1 Example 2: Assume an alphabet 5 = {a, 6, c, d, e, /, g, h} with
probabilities p(o) = 0.30, p(b) = 0.10, p(c) = 0.20, p(d) = 0.06, p(e) = 0.09,
p(f) = 0.07, p(g) = 0.03 and p(h) = 0.15, respectively. The Huffman tree
for this source is depicted in Fig. 3.3, while the Huffman code is shown in
Table 3.1.

Let us consider a string M of 200 symbols generated from the above source,
where the numbers of occurrences of a, 6, c, d, e, /, g and h in M are 60,
20, 40, 12, 18, 14, 6, and 30, respectively. Size of the encoded message M
using the Huffman codes in Table 3.1 will be 550 bits. Here it requires 2.75
bits per symbol on the average. On the other hand, the length of the encoded
message M will be 600 bits if it is encoded by a fixed length code of length
3 for each of the symbols. This simple example demonstrates how we can
achieve compression using variable-length coding or source coding techniques.
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3.7 PRINCIPAL COMPONENT ANALYSIS FOR DATA
COMPRESSION

Principal Component Analysis has been a popular technique for data compres-
sion. It forms the basis of the Karhunen-Loeve (KL) transform for compact
representation of data [5, 6, 10, 11]. The KL transform and the theory be-
hind principal component analysis are of fundamental importance in signal
and image processing. The principle has also found its place in data mining
for reduction of large-dimensional datasets. It has been successfully applied
to text analysis and retrieval for text mining as well [12]. The principal com-
ponent analysis has been developed based on the matrix theory for Singular
Value Decomposition (SVD).

According to singular value decomposition (SVD) theory, for any arbitrary
M x TV matrix F of rank L there exists an M x M unitary matrix U and an
TV x TV unitary matrix V so that

UTFV = (3.6)

where

A* (2)

0

is an M x TV diagonal matrix and the first L diagonal elements A?(i), for
i = 1, 2, ..., L, are called the singular values of input matrix F. Since U and
V are unitary matrices, we have

UUT = IM,

VVT = IN,

where IM and IN are the identity matrices of dimension M and N, respec-
tively. As a result, the input matrix F can be decomposed as

(3.7)
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The columns of U are chosen as the eigenvectors um of the symmetric matrix
FFT so that

UT(FFT)U =

A(2)

A(L)

0

(3.8)

where A(i), i = 1, 2, .. . , L, are the nonzero eigenvalues of FFT. Similarly,
the columns of matrix V are eigenvectors vn of the symmetric matrix FTF
as denned by

V1 (F1 F)V =

A(2)

A(L) (3.9)

0

where A(i), i = 1, 2, . . . , L are the corresponding nonzero eigenvalues of FTF.
The input matrix can be represented in series form by these eigenvalues and
eigenvectors as

(3.10)
t=i

If the eigenvalues A(i), for i = 1, 2, . . . , L are sorted in decreasing order
and only first K from the sorted list are significant (K < L), then we can
approximate the input matrix F by a smaller-dimensional matrix F using
these first K eigenvalues and corresponding eigenvectors only.

The eigenvector corresponding to the highest eigenvalue of FTF is called
the first principal component. Likewise, the second principal component is the
eigenvector corresponding to the next highest eigenvalue of FTF, and so on.
Hence the fcth principal component is the eigenvector corresponding to the
fcth largest eigenvalue of FTF.

The principal component analysis-based data reduction technique has been
very popular in data mining, particularly to reduce the high-order dimension-
ality of data to lower orders. This is also the foundation of Karhunen-Loeve
Transform used in many multimedia processing applications [5, 6, 10, 11].
Latent Semantic Analysis (LSA) technique has been developed based on this
theory of SVD, using a compact representation of the data in terms of a few
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Fig. 3.4 A general image compression framework.

principal components only. LSA has been effectively applied in text analysis
suitable for text mining [12], and has been described in detail in Section 9.2.5.

3.8 PRINCIPLES OF STILL IMAGE COMPRESSION

The statistical analysis of a typical image indicates that there is a strong
correlation amongst neighboring pixels. This causes redundancy of informa-
tion in the image. In general, still image compression techniques rely on two
fundamental redundancy reduction principles, namely, Spatial and Statistical.
Spatial redundancy is the similarity of neighboring pixels in an image and is
reduced by decorrelating the pixels. The statistical redundancy reduction is
referred to as entropy encoding, accomplished by a source coding algorithm.

The general model of a still image compression framework is shown as a
block diagram in Fig. 3.4. The decorrelation or preprocessing block is the step
for reducing the spatial redundancy of the image pixels. In lossless coding
mode, this decorrelated image is directly processed by the entropy encoder.
On the other hand, for lossy compression, the decorrelated image is further
preprocessed as shown in Fig. 3.4 in order to mask irrelevant information
depending upon the application criteria. This process is popularly called
Quantization. The quantized pixels are then entropy-encoded using a source
coding algorithm to compactly represent the image. We now discuss different
image coding principles in the following sections.

3.8.1 Predictive coding

Since the adjacent pixels in a typical image are highly correlated, it is possible
to extract a great deal of information about a pixel from its neighboring pixel
values. In predictive coding, a pixel value is predicted by a set of previously
encoded neighboring pixels. For an ideal prediction model, the predicted value
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Fig. 3.5 DPCM showing (a) neighbors of pixel X to be encoded, (b) prediction func-
tion, and (c) block diagram.

of the pixel is similar to the actual value. But in reality, using an effective
prediction model, we can predict a pixel value which is very close to its actual
value. A practical approach to the prediction model is to take a linear com-
bination of the previously encoded neighboring pixels. The reason for taking
the previously encoded pixels is that the same pixels will be available to the
decoder, when it decodes the pixels in the same order that they were encoded.
The difference between the actual pixel value and the predicted value is called
differential or prediction error. The error value e is then entropy-encoded
using a variable-length encoding technique to generate the compressed im-
age. This method is popularly known as Differential Pulse Code Modulation
(DPCM). The block diagram is provided in Fig. 3.5(c).

In Fig. 3.5(a), let pixels A, B, C, D, E, F, G, and H be the immediate
neighbors of pixel X to be encoded. If we follow the raster scan order conven-
tion to access the image from left-to-right and top-to-bottom, the previously
encoded pixels available to the predictor will be A, B, C, D. We assume
that the prediction function is Xp = A + 0.5£? — 0.5(7, using A, 5, and C
only, as shown in Fig. 3.5(b). The prediction error e = X — Xp has less en-
tropy as compared to X, because of the reduction in spatial redundancy. As
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Fig. 3.6 Histogram of (a) a typical image and (b) its prediction error.

a result, the error value e can be encoded by less number of bits to achieve
compression. Effectiveness of the error image for entropy encoding, as com-
pared to direct encoding of the image, can be explained by the corresponding
histograms shown in Fig. 3.6.

Statistical distribution of pixels in a typical image is uniform distribution
in nature, as shown in Fig. 3.6(a). Because of uniform distribution, average
number of bits per pixels in the range [0, 255] will be eight. In Fig. 3.6(b), we
provide the statistical distribution of the prediction error values of the same
image after applying the DPCM technique. The prediction error values belong
to the range [—255,+255]. It is clear from Fig. 3.6(b) that the statistical
distribution of the prediction errors of a typical image is Laplacian in nature,
and most of the prediction errors are skewed around zero. As a result, we can
apply a statistics-based entropy encoding technique to allocate smaller binary
codes to the prediction error values close to zero and larger codes to bigger
error values. Hence the average number of bits per pixel error will be less
than eight, thereby resulting in compression.

3.8.2 Transform coding

In predictive coding, the coding process takes place pixel by pixel. Transform
coding is an effective way of coding a group of spatially correlated pixels [10].
This technique takes advantage of the fact that the energy of most natural
images is mainly concentrated in the low-frequency regions.

A suitable transformation technique produces fewer number of correlated
transformed coefficients as compared to the original image, and a significant
amount of image information is concentrated in these fewer correlated trans-
formed coefficients. As a result, we can discard or mask the insignificant
transformed coefficients, mainly consisting of the high-frequency components,
using a suitable quantization technique without affecting the desired recon-
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Fig. 3.7 Transform coding-based (a) compression and (b) decompression.

structed image quality. This is possible because the human visual system has
perceptual masking effects, so that the high-frequency components are not as
sensitive to reconstruction errors as compared to their low-frequency counter-
parts. If the quantization process is not too coarse, then the reconstructed
image can be perceptually similar to the original one.

The general framework for transform coding-based image compression sys-
tems is depicted in Fig. 3.7(a). Usually the input image is first divided into a
number of smaller rectangular blocks B. Each of these blocks are then inde-
pendently transformed, using the chosen linear transformation technique. The
transformed coefficients are quantized and entropy encoded into bit-stream
c(B) in order to achieve compression. During the decompression, as shown
in Fig. 3.7(b), the compressed bit stream c(B) is first entropy-decoded to
generate the quantized coefficients. This is followed by inverse quantization
in order to generate an approximation of the transformed coefficients. The
inverse transformation is applied on these coefficients to reconstruct the im-
age block B'. The composition of the reconstructed image blocks forms the
reconstructed image, as shown in Fig. 3.7(b).

In transform coding, the selection of the transformation technique is a
major decision. The main motivation behind transformation from the spatial
domain to another domain (usually frequency domain) is to represent the
data in a more compact form in the transformed domain. The optimum
transformation also minimizes the mean squared error of the reconstructed
image. The Karhunen-Loeve Transform (KLT) [5, 10] has been proven to
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Fig. 3.8 Three-level multi-resolution wavelet decomposition and reconstruction of a
signal.

be optimal in terms of the compaction efficiency, by representing the image
using few principal components containing a significant portion of the image
information. KLT packs the most energy of an image block in the least number
of transformed coefficients. It completely decorrelates the pixels, and hence
minimizes the spatial redundancy in the image block.

Although KLT is optimum, it is not efficient for practical implementa-
tions. The basis functions of KLT are input data-dependent, because they
are formed by the eigenvectors of the autocorrelation matrix of the input sig-
nal. There is no fast algorithm for practical implementation of KLT, because
of its dependency on the input source signal. As a result, we have to choose
a suboptimal transform, so that the basis functions are not signal-dependent
and a fast algorithm can exist in order to have a practical implementation. A
number of suboptimal transforms like the Discrete Fourier Transform (DFT),
Discrete Cosine Transform (DCT), Discrete Sine Transform (DST), and Dis-
crete Hadamard Transform (DHT), to name a few, have been used in digital
image compression [6, 10]. Of these the DCT is the most popular block-based
transform, because its performance is very close to that of KLT and a number
of fast algorithms exist for DCT [13]. DCT is the basis for most of the im-
age and video compression algorithms, especially the still image compression
standard JPEG in lossy mode and the video compression standards MPEG-1,
MPEG-2, MPEG-4, H.263, etc. [14].

3.8.3 Wavelet coding

Representation of a signal using Fourier series in terms of the sinusoids is well
known in the signal processing community, provably for more than a century,
and is known to be effective for stationary as well as nonstationary signals.
The non-stationary signals are not statistically predictable, especially in the
regions of discontinuities. In a typical image, discontinuities occur at the
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Fig. 3.9 Three level multiresolution wavelet decomposition of an image.

edges. The basics of wavelet representation of signals have been discussed
in Section 2.2.7, using Eq. (2.32) and Fig. 2.7. In this section, we introduce
how the wavelet transformation is applied in image coding. Wavelet coding
is a transform coding technique that is not limited to the block-based im-
plementation only. Usually the wavelet transform is performed on the whole
image. Wavelet transform decomposes the input signal into low-frequency
and high-frequency subbands.

In 1989, Mallat [15] proposed the multiresolution approach for wavelet
decomposition of signals using a pyramidal FIR filter structure of QMF filter
pairs, which practically mapped the wavelet decomposition into the subband
coding paradigm. Once we express the wavelet decomposition in terms of
FIR filters, the same general principles of subband coding of digital images
applies. In multiresolution analysis, it can be proven that the decomposition
of signals using discrete wavelet transform can be expressed in terms of FIR
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filters [16] as

-fc (3-H)

k

and
am,n(/) = T «m-l,*(/)*2n-*. (3-12)

where g and /i are the high-pass and low-pass discrete FIR filters whose co-
efficients are related as gt = (— l)*/i_i+i. If the input signal /(£) is given in
discrete sampled form, say ao,n(/), to indicate original discrete samples at
resolution 0, then the above equations describe a multiresolution subband de-
composition of samples into am,n(f) and Cm,n(f) at level m using the subband
decomposed samples cm_i jn(/) at level m — 1, with a low-pass FIR filter h
and high-pass FIR filter g. The output subbands in every level are formed by
retaining every other filtered output sample, which results in decimation of
the output by a factor of 2. These filters are called the analysis filters. Using
the corresponding synthesis filters h' and g' , it can be shown that the signal
a0>n can be exactly reconstructed in m levels using the formula

_i. (3.13)

Figure 3.8 depicts the multiresolution decomposition approach using the anal-
ysis filters g and h, and reconstruction of the same using synthesis filters g'
and h'.

Image compression techniques using Discrete Wavelet Transform (DWT)
have received wide attention in recent years [17, 18]. Using a separable two-
dimensional filtering function, two-dimensional DWT can be computed by
applying one-dimensional DWT row-wise and column-wise independently. In
Fig. 3.9, we show an example of hierarchical wavelet decomposition of an
image into ten subbands after three levels of decomposition. After the first
level of decomposition, the original image is decomposed into four subbands
LI/1, HL1, LHl, and HHl. The LLl subband is the low-frequency subband
which can be considered as a 2:1 subsampled (horizontally and vertically)
version of the original image /, and its statistical characteristic is similar to
the original image as shown by the shaded regions in Fig. 3.9. Here HL1,
LH1, and HHl are called the high-frequency subbands, where HLl and
LH I correspond to the horizontal and vertical high frequencies, respectively.
HHl constitutes the high frequencies that are not in either horizontal or
vertical orientations. Each of these spatially oriented (horizontal, vertical, or
diagonal) subbands mostly contain information of local discontinuities in the
image, and the bulk of the energy in each of the high-frequency subbands are
concentrated in the vicinity of areas which correspond to edge activity in the
original image.

Since the low-frequency subband LLl has similar spatial and statistical
characteristics as the original image, it can be further decomposed into four
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subbands LI/2, HL2, LH2, and HH2. Continuing the same method for de-
composition in I/L2, the original image is decomposed into 10 subbands I/L3,
HL3, LH3, HH3, HL2, LH2, HH2, HLl, LHl, and HHl after three lev-
els of pyramidal multiresolution subband decomposition, as shown in Fig. 3.9.
The same procedure can continue to further decompose LL3 into higher levels.

Using the right wavelet filters and choosing an effective quantization strat-
egy for each subband can yield good compression performance. Each decom-
posed subband may be encoded separately using a suitable coding scheme.
We can allocate different bit-rates to different subbands. Because of the hier-
archical nature of the subbands in wavelet decomposition, a smaller number
of bits need to be allocated to the high-frequency subbands in a lower level as
compared to the high-frequency subbands in upper levels. This helps maintain
good fidelity of the reconstructed image and thereby achieves good compres-
sion. Experimental results show that we can even allocate zero bits to the
HHl subband and still maintain good reconstructed quality in most of the
natural images.

3.9 IMAGE COMPRESSION STANDARD: JPEG

JPEG is the acronym for Joint Photographic Experts Group. It is the first
international image compression standard for continuous-tone still images,
including both gray scale and color images [7]. The goal of this standard is
to support a variety of applications for compression of continuous-tone still
images (i) of different sizes, (ii) in any color space, (iii) in order to achieve com-
pression performance at or near the state of the art, (iv) with user-adjustable
compression ratios, and (v) with very good to excellent reconstructed quality.
Another goal of this standard is that it should have manageable computa-
tional complexity for widespread practical implementation. JPEG defines the
following four modes of operation [7].

1. Sequential Lossless Mode: Compress the image in a single scan, and the
decoded image is an exact replica of the original image.

2. Sequential DCT-Based Mode: Compress the image in a single scan using
DCT-based lossy compression technique. As a result, the decoded image
is not an exact replica but an approximation of the original image.

3. Progressive DCT-Based Mode: Compress the image in multiple scans
and also decompress the image in multiple scans, with each successive
scan producing a better quality image.

4. Hierarchical Mode: Compress the image at multiple resolutions for dis-
play on different devices.

The three DCT-based modes (2, 3, and 4) in JPEG provide lossy com-
pression, because the precision limitation to digitally compute DCT (and
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its inverse) and the quantization process introduce distortion in the recon-
structed image. For sequential lossless mode of compression, predictive coding
(DPCM) is used instead of the DCT-based transformation and also there is
no quantization involved. The simplest form of sequential DCT-based JPEG
is called the baseline JPEG algorithm. We shall describe the JPEG lossless
algorithm and the baseline JPEG algorithm in greater detail in the following
two sections.

3.10 THE JPEG LOSSLESS CODING ALGORITHM

Lossless JPEG compression is based on the principles of predictive coding. In
this scheme, the value of a pixel X is first predicted by using one or more of the
previously encoded adjacent pixels A, B, and C as shown in Fig. 3.10(a). It
then encodes the difference between the original pixel and its predicted value,
usually called the prediction error or prediction residual, by either Huffman
coding or binary arithmetic coding (QM-coder) [7].

Fig. 3.10 JPEG lossless model with (a) 3-pixel prediction neighborhood and (b) en-
coder diagram.

There are eight possible options for prediction as shown in Table 3.2. Op-
tions 1 to 3 are one-dimensional predictors, while options 4 to 7 deal with two
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dimensions. Depending upon the nature of the image, one predictor may yield
better compression result as compared to another. However, experimental re-
sults on various kinds of images show that on the average their performance
are relatively close to each other [19]. The chosen option for prediction is
indicated in the header of the compressed file, so that both the encoder and
decoder use the same function for prediction.

Table 3.2 Prediction functions in lossless JPEG

Option
0
1
2
3
4
5
6
7

Prediction function
No prediction
J\.p — A

Xp = B
XP = C
Xp = A + B -C
Xp = A+ \(B -C)
-/».p -— XJ ~ r T% I •** ~~ *-̂  J

X , 1 / ,4 | r^\
P ~™~ ^ x1^^ "• "^ )

Type of prediction
Differential Coding

1-D Horizontal Prediction
1-D Vertical Prediction
1-D Diagonal Prediction

2-D Prediction
2-D Prediction
2-D Prediction
2-D Prediction

Table 3.3 Categories of prediction error values

Category
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Prediction error value

7
' i

-15,
-31,.
-63,.

-127,.
-255, . .
-511,..

-1023, . .
-2047, . . .
-4095, . . .
-8191,...

-16383, . . .
-32767,

0
-1, +1

-3, -2, +2, +3
. . - , -4, +4, . . . ,
. . . , —8, +8, . . . ,
..,-16, +16, ...
. . , -32, +32, . . .
. . , -64, +64, . . .
.,-128, +128, ..
. , -256, +256, . .
. , -512, +512, . .
,-1024, +1024, .
, -2048, +2048, .
, -4096, +4096, .
, -8192, +8192, .
-16384, +16384,

+32768

+7
+15
, +31
, +63
,+127
. , +255
.,+511
. , +1023
. . , +2047
. . , +4095
. . , +8191
. . , +16383
. . . , +32767

In the lossless mode, the standard allows precision P of the input source
image to be 2 bits to 16 bits wide. Since there is no previously encoded pixel
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known to the encoder when it encodes the very first pixel in the very first row
of the image, it is handled differently. For a given input precision P and a
point transform parameter Pt, the predicted value for the first pixel in the first
line is 2p~Pt~1. By default, we can assume Pt = 0. For details of the point
transform parameter, the reader is advised to consult the JPEG standard [7].
For all other pixels (except the first one) in the first line, we use option 1 for
prediction function. Except for the first line, option 2 is used to predict the
very first pixel in all other lines. For all other pixels, we select one of the eight
options for prediction function from Table 3.2. Once a predictor is selected,
it is used for all other pixels in the block.

In lossless JPEG standard, the prediction error values are computed mod-
ulo 216 to take into consideration the full precision allowed in this mode.
These error values are first represented as a pair of symbols (CATEGORY,
MAGNITUDE). The first symbol CATEGORY represents the category of the
error value. The second symbol MAGNITUDE represents the Variable-Length
Integer (VLI) for the prediction error value. CATEGORY represents the number
of bits to encode MAGNITUDE in terms of VLI. All the possible prediction er-
ror values, modulo 216, and their corresponding categories are shown in Table
3.3. Only the CATEGORY in the symbol pair for each prediction error value
is Huffman coded.

The codeword for the symbol pair (CATEGORY, MAGNITUDE) is formed
in two steps. First it assigns the Huffman code of the CATEGORY. This
Huffman code is then appended with additional CATEGORY number of bits
to represent the MAGNITUDE in VLI. If the prediction error value is positive,
the MAGNITUDE is directly binary represented by a VLI using CATEGORY
number of bits and hence it starts with bit 1. If the error value is negative,
the VLI is 1's complement of its absolute value and hence it starts with bit 0.

For example, the prediction error value "25" is represented by the pair (5,
25) because the number 25 belongs to category 5 in Table 3.3 and hence 25 is
represented by a 5-bit VLI. If the Huffman code for category 5 is "Oil," then
the binary codeword for the error value 25 will be "01111001." The first three
bits correspond to the Huffman code "Oil" for category 5 and next 5 bits
"11001" is the VLI for 25. Similarly, the prediction error value —25 will be
represented as "01100110." Here the last 5 bits '00110' is the 1's complement
of "11001" to represent —25 and, since —25 belongs to the same category 5,
the first three bits of the codeword correspond to Huffman code of category
5.

Use of the CATEGORY of the error values greatly simplifies the Huffman
coder. Without this categorization, we would require to use a Huffman table
with 216 entries for all the 216 possible symbols of prediction error values.
Detailed information for implementation of the JPEG lossless coding can be
found in Annex H of the JPEG standard [7].
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3.11 BASELINE JPEG COMPRESSION

Among the four modes of the JPEG family, the baseline JPEG compression
algorithm is most widely used. It is defined for compression of continuous-tone
images with one to four components. The number of components for gray scale
images is one, whereas a color image can have up to four color components.
The baseline JPEG allows only 8-bit samples within each component of the
source image. An example of a four-component color image is a CMYK (cyan,
magenta, yellow and black) image which is used in many applications such as
printing, scanning etc.

A color image for display has three color components RGB (red, green and
blue). In a typical color image, the spatial intercomponent correlation be-
tween the red, green, and blue color components is significant. In order to
achieve good compression performance, the correlation between color compo-
nents is first reduced by converting the RGB image into a decorrelating color
space. In baseline JPEG, a three-color RGB image is first transformed into a
Luminance-Chrominance (L-C) color space such as YCbCr, YUV, CIELAB,
etc. The advantage of converting an image into Luminance-Chrominance
color space is that the luminance and chrominance components are very much
decorrelated between each other. Moreover, the chrominance channels contain
many redundant information and can easily be subsampled without sacrificing
any visual quality of the reconstructed image.

3.11.1 Color space conversion

In this section, we consider color space conversion only from RGB to YCbCr
and vice versa. There are several ways to convert from RGB to YCbCr color
space. Here we adopt the CCIR (International Radio Consultative Commit-
tee) Recommendation 601-1. This is the typical method for color conversion
used in baseline JPEG compression. According to CCIR 601-1 Recommen-
dation, the transformation from RGB to YCbCr is done based on the math-
ematical expression

0.29900 0.58700 0.11400
-0.16874 -0.33126 0.50000

0.50000 -0.41869 -0.08131

Color space conversion from RGB to YCbCr using the above transformation
may result in negative numbers for Cb and Cr, while Y is always positive. In
order to represent Cb and Cr as unsigned 8-bit integers, they are level-shifted
by adding 128 to each sample followed by rounding and saturating the value
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in the range [0, 255]. Hence the above transformation can be expressed as

Y \ / 0.29900 0.58700 0.11400
Cb \ = [ -0.16874 -0.33126 0.50000
Cr j V 0.50000 -0.41869 -0.08131

(3-14)
in order to produce 8-bit unsigned integers for each of the components in the
YCbCr domain. Accordingly, the inverse transformation from YCbCr to RGB
is done as

0.0 1.40210
-0.34414 -0.71414

1.77180 0.0
(3.15)

F(g. 3. J J Definition of MCUs for (a) YCbCr 4:4:4, (b) YCbCr 4:2:2, (c) YCbCr 4:2:0.

After the color space conversion, most of the spatial information of the
image is contained in the luminance component (Y). The chrominance com-
ponents (Cb and Cr) contain mostly redundant color information, and we lose
little information by subsampling these components both horizontally and/or
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vertically. We can subsample the chrominance components by simply throw-
ing away every other sample in each row and/or each column, if desired. If
we subsample the redundant chrominance components both horizontally and
vertically, the amount of data required to represent the color image is reduced
to half because each chrominance component now has only half resolution
both in horizontal and vertical directions. This color format is called 4:2:0
color subsampling format.

Baseline JPEG also supports 4:2:2 and 4:4:4 color formats. Each chromi-
nance component in the 4:2:2 color format has the same vertical resolution
as the luminance component, but the horizontal resolution is halved by drop-
ping alternate samples in each row. In the 4:4:4 format, both the chrominance
components Cb and Cr have identical vertical and horizontal resolution as the
luminance component. Hence no subsampling is done here. The subsampling
operation to generate the 4:2:0 or 4:2:2 color format is the first lossy step.

3.11.2 Source image data arrangement

In the previous section we have seen that the dimension of each of the color
components Y, Cb, and Cr could be different, depending upon the color sub-
sampling format. Each color component is divided into 8 x 8 nonoverlapping
blocks. Selecting one or more such data blocks from each of the color com-
ponents, we can form what is called a minimum coded unit (MCU) in JPEG.
The standard defines the arrangement of the data blocks in either interleaved
or noninterleaved scanning order of the color components. In a noninterleaved
scan, the data blocks in each color component are stored and processed sep-
arately in raster scan order, left-to-right and top-to-bottom. In interleaved
order, data blocks from all the color components appear in each MCU. Def-
inition of the MCUs for 4:4:4, 4:2:2, and 4:2:0 formats of YCbCr images in
interleaved scan is shown in Fig. 3.11.

Each dot in Fig. 3.11 represents an 8 x 8 data block. In 4:4:4 format
interleaved scan, each MCU consists of a data block from each of the Y, Cb,
and Cr component as shown in Fig. 3.11 (a). The order of processing these
blocks is in the scan order from left-to-right and top-to-bottom. For example,
the first MCU consists of the first data block YOO from the Y component
followed sequentially by the first data blocks CbOO from the Cb component
and CrOO from the Cr component as shown in Fig. 3.11 (a). The next MCU
consists of Y01, CbOl, and CrOl, respectively. After all the MCUs consisting
of the 8 x 8 data blocks from the first row (as depicted in Fig. 3.11(a)) are
encoded, the second row of 8 x 8 blocks are scanned in a similar fashion. This
procedure is continued until the last 8 x 8 block in the raster scan is encoded.

In 4:2:2 format, each MCU consists of a 2 x 2 unit of four data blocks from
the Y component followed by a 2 x 1 unit of two data blocks from each of
the Cb and Cr components. The corresponding order of processing is shown
in Fig. 3.11(b). In 4:2:0 format, each MCU consists of 2 x 2 units of four
data blocks from the Y component followed by one from each of the Cb and
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Cr components, and the corresponding order of processing is illustrated in
Fig. 3.11(c).

3.11.3 The baseline compression algorithm

The baseline JPEG algorithm follows the principles of block-based transform
coding. Block diagram of the baseline JPEG algorithm for a gray scale image
with a single component is shown in Fig. 3.12. For a color image, the same
algorithm is applied to each 8 x 8 data block based on the source image data
arrangement described in Section 3.11.2.

Fig. 3.12 JPEG baseline (a) compression and (b) decompression.

The image component is first divided into nonoverlapping 8 x 8 blocks in
the raster scan order left-to-right and top-to-bottom as depicted in Fig. 3. 12 (a).
Each block is then encoded separately by the Encoder, shown by the broken
box in Fig. 3.12(a). The first step is to level shift each pixel in the block to
convert into a signed integer, by subtracting 128 from each pixel. Each level
shifted pixel in 8 x 8 block is then transformed into the frequency domain
via forward DCT (FDCT). The FDCT of 8 x 8 block of pixels f ( x , y ) for
(x, y = 0, 1, . . . , 7) is defined as

cv \ ^ f \ ^ f \ t f \F(u, v) = -C(u)C(v) 2^ 2^ f ( x , y) cos
x=0y=0 "-

for u = 0, 1, . . . , 7 and v = 0, 1, . . . , 7, where

cos

(3.16)
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C(k) = for k = 0
otherwise.

The transformed 8 x 8 block now consists of 64 DCT coefficients. The first
coefficient F(0,0) is the DC component of the block, while the other 63 co-
efficients are the AC components ACU,V = F(u, v) of the block as shown in
Fig. 3.13. The DC component F(0,0) is essentially the sum of 64 pixels in
the input 8 x 8 pixel block multiplied by the scaling factor \C(u)C(v) = |,
as in Eq. (3.16).

Fig. 3.13 DC and AC components of the transformed block.

The next step in the compression process is to quantize the transformed
coefficients. This step is primarily responsible for losing information, and
hence introduces distortion in the reconstructed image. That is the reason
why baseline JPEG is a lossy compression. Each of the 64 DCT coefficients
are uniformly quantized. The 64 quantization step-size parameters for uni-
form quantization of the 64 DCT coefficients form an 8 x 8 Quantization
Matrix. Each element in the Quantization Matrix is an integer between 1 and
255. Each DCT coefficient F(it, v) is divided by the corresponding quantizer
step-size parameter Q(u, v) in the Quantization Matrix and is rounded to the
nearest integer as

/ EV,,. ,.\ \
(3.17)

The JPEG standard does not define any fixed Quantization Matrix, and it is
the prerogative of the user to select the matrix. There are two quantization
matrices provided in Annex K of the JPEG standard for reference, but not as
a requirement. These two quantization matrices are shown in Tables 3.4 and
3.5, respectively.
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Table 3.4 Luminance Quantization Matrix

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

Table 3.5 Chrominance Quantization Matrix

17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
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F(g. 3.14 Encoding of quantized DCT coefficients, with (a) zig-zag ordering of AC
coefficients, and (b) differential coding of DC.

Table 3.4 is the Luminance Quantization Matrix for quantizing the trans-
formed coefficients of the luminance component of an image. Similarly, Table
3.5 is the Chrominance Quantization Matrix for quantizing the transformed
coefficients of the chrominance components of the image. These two quanti-
zation tables have been designed based on the psychovisual experiments by
Lohscheller [20] to determine the visibility thresholds for 2-D basis functions.
These tables may not be suitable for all kinds of images, but they provide
reasonably good result for most natural images with 8-bit precision for lumi-
nance and chrominance samples. If the elements in these tables are divided by
2, we get perceptually lossless compression, whereby the reconstructed image
is indistinguishable from the original one by human eyes. When the quanti-
zation tables are designed based on the perceptual masking properties of the
human eye, many of the small DCT coefficients (high-frequency samples) are
zeroed out to aid significant compression. This is done by using larger quanti-
zation step-size parameters for higher-frequency AC components, as depicted
in Tables 3.4 and 3.5.

Quality of the reconstructed image and the achieved compression can be
controlled by a user, by selecting a quality factor Q-JPEG to tune the el-
ements in the quantization tables, as proposed by the Independent JPEG
Group and implemented in their software [21]. The value of Q.JPEG may
vary from 1 to 100. The quantization matrices in Tables 3.4 and 3.5 have
been set for Q.JPEG — 50. For other Q.JPEG values, each element in both
the tables are simply scaled by a factor a defined as [21]

50
Q-JPEG

a =
if 1 < Q.JPEG < 50,

if 50 < Q.JPEG < 100,
(3.18)
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subject to the condition that the minimum value of the scaled quantization
matrix elements aQ(u, v) is 1. For the best reconstructed quality, Q-JPEG
is set to 100.

After quantization of the DCT coefficients, the quantized DC coefficient
is encoded by differential encoding. The DC coefficient DCi of the current
block is subtracted from the DC coefficient DCi-\ of the previous block and
the difference

DIFFi = Dd-i - Dd (3.19)

is encoded as shown in Fig. 3.14(b). This is done to exploit the spatial corre-
lation between the DC values of the adjacent blocks.

Encoding of the AC coefficients is not straightforward. Instead of encoding
each AC coefficient in the block, only the significant (nonzero) coefficients
are encoded in an efficient manner such that the runs of zeros preceding a
nonzero value is embedded into the encoding. Usually there are few signifi-
cant low-frequency AC coefficients in the whole 8 x 8 block, and most of the
higher-frequency coefficients are quantized to zeros. In order to exploit this
property, the AC coefficients are ordered in a particular irregular order se-
quence as shown in Fig. 3.14(a). This irregular ordering of the AC coefficients
is called the zig-zag ordering. It is done to keep the low-frequency coefficients
together, and it forms long runs of zeros corresponding to the higher-frequency
quantized coefficients. This zig-zag sequence is then broken into runs of zeros
ending in a nonzero value.

Before we explain the entropy encoding procedure, let us demonstrate the
results of level shifting, DCT, quantization, and zig-zag ordering with an ex-
ample 8 x 8 block extracted from a natural image.

110
108
106
110
115
115
110
103

110
111
119
126
116
106
91
76

118
125
129
130
119
99
82
70

118
122
127
133
120
110
101
95

121
120
125
133
122
107
99
92

126
125
127
131
125
116
104
91

131
134
138
141
137
130
120
107

131
135
144
148
139
127
118
106

Example: One 8 x 8 data block
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-18
-20
-22
-18
-13
-13
-18
-25

-18
-17
-9
-2

-12
-22
-37
-52

-10
-3

1
2

-9
-29
-46
-58

-10
-6
-1

5
-8

-18
-27
-33

-7
-8
-3

5
-6

-21
29

-36

-2
-3
-1

3
-3

-12
-24
-37

3
6

10
13
9
2

-8
-21

3
7

16
20
11
-1

-10
-22

Level shifted 8 x 8 data block

-89.00
74.14

-63.65
3.73
2.50
7.52

-3.40
-2.26

-63.47
-2.90

3.10
2.85
0.57

-1.80
0.43

-0.88

18.21
-19.93

5.08
6.67

-4.46
-0.63

0.81
1.73

-6.85
-21.04

14.82
8.99
0.52

-0.10
0.28
0.23

7.50
-17.88

10.12
-3.38

3.00
0.41

-0.40
-0.21

13.45
-10.81

9.33
1.54

-2.89
-3.21
-0.19
-0.12

-7.00
8.29
1.31
1.04

-0.32
-2.74
-0.58

1.23

0.13
5.26

-0.62
-0.62

1.33
-2.07
-1.09

1.61

DCT coefficients of the above 8 x 8 block

-6
6

-5
0
0
0
0
0

-6
0
0
0
0
0
0
0

2
-1

0
0
0
0
0
0

0
-1

1
0
0
0
0
0

0
I

0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

Results of DCT coefficients quantized by Luminance Quantization Matrix

The entropy encoding procedure for the differentially encoded DC coef-
ficient is identical to the entropy encoding of the prediction error values, as
explained in Section 3.10 for lossless JPEG. For 8-bit images in baseline JPEG,
the DCT coefficients fall in the range [-1023,+1023]. Since the DC coeffi-
cient is differentially encoded, the differential value of DC falls in the range
[—2047, -1-2047]. Assuming that the DC coefficient of the previous block is —4
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as an example, we get the differential DC value of the present block to be
—2. Using Table 3.3, we find that this belongs to category 2 and hence —2 is
described as (2, "01"). If the Huffman code of category 2 is "Oil," then -2 is
coded as "01101," where the last two bits "01" represent the variable-length
integer (VLI) code of —2. There are two Huffman tables (Tables K.3 and K.4)
for encoding the DC coefficients in Annex K of the baseline JPEG standard
for reference. But the user can choose any table and add them as part of the
header of the compressed file [7]. Table K.3 is supplied for coding the Lumi-
nance DC differences as a reference. Table K.4 is supplied for Chrominance
DC differences.

After zig-zag ordering of the AC coefficients in the example, the resulting
sequence becomes
" - 6 6 - 5 0 2 0 - 1 0 0 0 0 0 - 1 0 0 - 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
o o o o o o o o o o o o o o o o o o o o o o o o o o o o."
This sequence of AC coefficients can be mapped into an intermediate se-
quence of combination of two symbols symboli and symbol^. Here symbol^
is represented by a pair (RUN LENGTH, CATEGORY], where RUN LENGTH is
the number of consecutive zeros preceding the nonzero AC coefficient being
encoded and CATEGORY is the number of bits to represent the VLI code of
this nonzero AC coefficient. Again symbol^ is a single piece of information
designated (AMPLITUDE], which is encoded by the VLI code of the nonzero
AC coefficient. Accordingly, the zig-zag sequence in the example can be com-
pactly represented as

(0, 3)(-6), (0, 3)(6), (0, 3)(-5), (1, 2)(2), (1, !)(-!), (5, !)(-!), (2, !)(-!),
(0, 1)(1), (0, 0).

The first significant (nonzero) AC coefficient in the zig-zag sequence is found to
be —6. It is represented as (0, 3) (—6) because it precedes with no run of zeros
(i.e., RUN LENGTH = 0) and the AMPLITUDE = —6 belongs to CATEGORY
= 3. Similarly, the following two nonzero coefficients 6 and —5 are repre-
sented as (0, 3) (6) and (0, 3) (—5), respectively. The next significant coeffi-
cient 2 is represented by (1, 2) (2) because it precedes a zero coefficient (i.e.,
RUNLENGTH = 1) and AMPLITUDE = 2 belongs to CATEGORY = 2. Again,
the next significant symbol is represented as (1, !)(—!). The following sig-
nificant coefficient —1 is represented as (5, !)(—!) because it precedes five
zeros (i.e., RUNLENGTH = 5) and AMPLITUDE = — 1 belongs to CATEGORY
= 1. Following the same procedure, the next two nonzero coefficients —1
and 1 are represented by (2, !)(—!) and (0, 1)(1), respectively. There are no
other nonzero coefficients in the remaining of the zig-zag sequence. A special
symbol (0, 0) is used to indicate that the remaining elements in the zig-zag
block are all zeros. Each (RUNLENGTH, CATEGORY) pair is encoded using a
Huffman code, while the corresponding AMPLITUDE is encoded by the VLI
code.
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There are two special symbols in encoding the zig-zag sequence of AC
coefficients, namely, (0, 0) and (15, 0). The first special symbol (0, 0) is
referred as BOB (end-of-block), to indicate that the remaining elements in
the zig-zag block are zeros. The other special symbol (15, 0) is also referred
as ZRL (Zero-Run-Length) and is used to indicate a run of 16 zeros. Maximum
length of a run of zeros allowed in baseline JPEG is 16. If there are more than
16 zeros, then the run is broken into a number of runs of zeros of length 16.
For example, consider 57 zeros before a nonzero coefficient, say —29. This
will be represented by (15, 0) (15, 0) (15, 0), (9, 5)(-29). Here the first three
(15, 0) pairs represent 48 zeros and (9, 5)(—29) represents 9 zeros followed by
the coefficient —29 which belongs to category 5.

The baseline JPEG allows a maximum of four Huffman tables, - that is,
two for encoding AC coefficients and two for encoding DC coefficients. In
luminance-chrominance image data, usually two Huffman tables (one for AC
and one for DC) each are used for encoding the luminance and chrominance
data. The Huffman tables used during the compression process are stored as
header information in the compressed image file, in order to uniquely decode
the coefficients during the decompression process. There are two Huffman
tables (Tables K.5 and K.6) for encoding the AC coefficients, and two oth-
ers (Tables K.3 and K.4) for encoding the DC coefficients in Annex K of
the baseline JPEG standard for reference. The users can choose any table of
their choice and store it as part of the header of the compressed file [7]. Tables
K.3 and K.5 are recommended for luminance DC differences and AC coeffi-
cients. Tables K.4 and K.6 are recommended for corresponding chrominance
channels.

Let us now allocate the variable-length codes in the last example. The
codewords for (0, 0), (0, 1), (0, 3), (1, 1), (1, 2), (2, 1) and (5, 1), from Table
K.5, are 1010, 00, 100, 1100, 11011, 11100, and 1111010, respectively. VLI
codes for the nonzero AC coefficients 1, -1, 2, -5, 6, and -6 are 1, 0, 10, 010,
110, and 001, respectively. Codeword for the differential DC value is 01101.
The compressed bit-stream for the 8 x 8 block is shown below, and it requires
only 52 bits as opposed to the 512 bits required by the original 8 x 8 block
of 8-bit pixels. We have

'01101100001100110100010110111011000111101001110000011010',

where the first five bits "01101" represent the DC coefficient and the other 47
bits represent the AC coefficients. Therefore, we achieve approximately 10:1
compression using the baseline JPEG to compress the block.

3.11.4 Decompression process in baseline JPEG

Decompression is the inverse process to decode the compressed bit-stream, in
order to properly reconstruct the image. Block diagram of the baseline de-
compression algorithm is provided in Fig. 3.12(b). During the decompression
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Fig. 3.15 Original pepper image.

process, the system first parses the header of the compressed file in order to
retrieve all the relevant information, namely, image type, number of compo-
nents, format, quantization matrices, and the Huffman tables that were used
to compress the original image, etc.

After parsing the header information, the decompression algorithm is ap-
plied on the compressed bit-stream as shown in Fig. 3.12(b). The entropy
decoding step in Fig. 3.12(b) decodes the bit-stream of the compressed data
using the Huffman tables that were used during the compression process. The
purpose of this step is to regenerate the zig-zag ordered sequence of the quan-
tized DOT coefficients. This zig-zag sequence is then reordered by the zig-zag
reordering step to create the 8 x 8 block of quantized DCT coefficients. Each
DCT coefficient in the quantized block is inverse-quantized as

(3.20)

where Q(u, v) is the quantization step-size parameter from the same quan-
tization table that was used during the compression process. After inverse-
quantization, the DCT coefficients F'(u,v) are inverse transformed to spatial
domain data via inverse DCT (IDCT). The IDCT of an 8 x 8 block F'(u, v),
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for u, v = 0,1,..., 7, is defined as

cos
u=0 v=0

for x = 0,1,.. . , 7 and y = 0,1,..., 7.

cos
7r(2j/+l>

(3.21)

Fig. 3.16 Pepper image compressed with quality factor 75.

After decompression of all the MCUs from the compressed bit-stream, the
image components are reconstructed. For a gray scale image, there is only
one component and no color transformation is required. For color image,
the reconstructed Y, Cb, and Cr components are inverse-transformed to the
RGB color space. We show in color the famous Pepper image in Fig. 3.15.
When compressed, using the baseline JPEG algorithm with quality factor
Q.JPEG = 75, the reconstructed image is found to be perceptually almost
identical to the original image. This is demonstrated in Fig. 3.16. When we
compress the same image with a quality factor Q-JPEG — 10, we can see
prominent artifacts in the image as shown in Fig. 3.17. Such artifacts, caused
by lossy JPEG compression/decompression, are called blocking artifacts. This
happens because of the discontinuities created at the 8 x 8 block boundaries,
since these blocks are compressed and decompressed independently.
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Fig. 3.17 Pepper image compressed with quality factor 10.

3.11.5 JPEG2000: Next generation still picture coding standard

Goal of the JPEG2000 [22, 23] standardization activity is to advance imaging
applications in the new era of Internet and wireless communication. This new
standard is expected to address the areas where the current JPEG standard
fails to produce the best quality or performance requirements.

The current JPEG standard for still image compression is very much suit-
able for compressing images at 0.5 bits per pixel or higher. However, the
reconstructed image quality significantly degrades at lower bit rates. Recon-
structed quality of a JPEG compressed image is unacceptable below 0.25 bits
per pixel. JPEG results in poor compression performance when applied to bi-
level images for compound documents, such as facsimile, scan, and text-type
imagery. Current JPEG standard has 44 different modes of operation, with
many of these modes being very application-specific and not widely used in
practice. As a result, the interchangeability between the different modes of
JPEG applications is a difficult proposition.

JPEG2000 is targeted for more compression efficiency in terms of compres-
sion ratio and image quality, especially at very low bit-rates (below 0.25 bits
per pixel). JPEG2000 will have a single common decompression architecture
to encompass different modes and types of applications, so that it is suitable
for greater interchange between applications encompassing different features.
The same decompression architecture will be suitable both for bi-level and
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continuous tone images, because the JPEG2000 system is capable of com-
pressing and decompressing images with various dynamic ranges between 1
to 16 bits for each color component. This standard is expected to handle new
paradigms of distributed imaging applications, especially Internet imaging.
JPEG2000 will provide an open systems approach to imaging applications.
The interesting feature of this new standard is that the same algorithm can
be used for both lossless and lossy compression of still images.

Unlike DOT in current JPEG, the JPEG2000 coding algorithm is be-
ing defined based on the principles of Discrete Wavelet Transform (DWT),
which offers multiresolution and efficient progressive encoding/decoding sys-
tem. Progressive decoding can be achieved in terms of resolution, while being
progressive in terms of visual quality from the same encoded bit-stream and
selectable during the decoding time. This capability is particularly suitable
for client-server applications such as World Wide Web and many other dis-
tributed networking environments. This is also suitable for retrieval, archival,
print, and color facsimile-type applications.

There are two types of wavelet filters to accomplish DWT in the JPEG2000
standard. One type of wavelet filters generates noninteger values for the trans-
formed coefficients, which are mainly used for lossy image compression and
cannot be used for lossless image compression. The other type of wavelet
filters generates integer-transformed coefficients, which are used mainly for
lossless compression. However, they can be used in lossy mode also, when
the transformed coefficients are quantized after wavelet transformation. In
current JPEG, the steps in lossless mode of compression are entirely differ-
ent from the lossy mode. In JPEG2000 a common algorithm is used in both
lossy and lossless modes, based on the selection of corresponding wavelet fil-
ters. JPEG2000-compressed images are very much suitable for transmission
through a noisy environment like wireless channels, because of the error re-
silience features embedded into the bit stream.

This technology will enable regions of particular interest in an image to be
encoded with greater fidelity (Region of Interest coding) compared to other
areas in the image, and it will also enable random access to the compressed
data for manipulation of the images in the compressed domain. The random
access of the code-stream will allow operations such as rotation, translation,
scaling, filtering, etc., without decompressing the whole image. The file for-
mat of JPEG2000 is expected to handle the features of metadata such as Wa-
termarking of images, Intellectual Property Rights as per the WIPO (World
Intellectual Property Organization) compliant, Content Registration, JPEG
Registration Authority, etc. The plan of this standard is to provide appro-
priate interfaces with MPEG-4, in order to insert and extract still pictures
to/from moving video and maintain corresponding Intellectual Property infor-
mation. JPEG2000 is a good candidate for usage in multimedia data mining,
because of the metadata information that can be handled using this standard.
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3.12 TEXT COMPRESSION

Text compression is inherently lossless in nature. Like image and video com-
pression, there is no standard committee devoted to define text compression
standards under the auspices of an international standard body. However,
industry adopted text compression schemes, mainly based on the principles
of text processing and string matching. We shall describe some of them here.

Dictionary-based coding techniques are particularly suitable for compress-
ing text datatypes. Typically, redundancy in text appears in the form of
common words, which repeat quite often, in addition to the statistical re-
dundancy of individual characters. In order to achieve significantly enhanced
compression performance, it is desirable to exploit both these aspects of re-
dundancy. We can handle the redundancy of frequently appearing common
words by constructing a dictionary and replacing each common word in the
text file by an index to the dictionary. This approach is popularly known
as the dictionary-based coding scheme. The dictionary could be static or dy-
namic.

In static dictionary coding, the dictionary is fixed during both compres-
sion and decompression. The simplest example of this scheme is to express
(or encode) the words "Sunday," "Monday," ..., "Saturday" by the indices
1,2,... ,7. A dynamic dictionary coding, however, builds a dictionary dynam-
ically using the message itself that is being encoded or decoded. The basic
idea behind most of the dynamic dictionary-based robust lossless text com-
pression schemes is to first parse the text (which can be considered as a string
of characters) into a sequence of substrings and then generate compressed
codes of these substrings. Jacob Ziv and Abraham Lempel described effi-
cient dynamic dictionary encoders, popularly known as LZ77 [24] and LZ78
[25], by replacing a group of characters of the text (phrases) with a pointer to
where they have occurred earlier in the portion of the text that has already
been encoded. Many variations of these algorithms have been developed after
that. They are collectively called the Ziv-Lempel or Lempel-Ziv (LZ) family,
namely, LZSS [26], LZW [27], LZC [28], LZWAJ [29], etc. For example, LZSS,
a variation of LZ77, is the basis of the text compression engine in popularly
used compression utilities like zip, gzip, pkzip, winzip. The LZW algorithm,
a variant of LZ78 scheme, is the core of the Unix compress utility.

There exist other categories of text compression algorithms. Some of the
popular ones include variants of a technique called Prediction by Partial
Matching (PPM) [30, 31]. PPM is a statistical compression scheme based
on context modeling of the symbols. The already encoded portion of the text
is used as context to determine the probability of the symbol being encoded.
It relies on the Arithmetic coding scheme [32] to achieve good compression
performance. Although there are a number of variations of the PPM algo-
rithm for text compression, such as PPMA, PPMB, PPMC, etc., none of them
are supported by any underlying theory. However, the PPM algorithms are
relatively slow as compared to the LZ family of algorithms.
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A comparatively recent development in context based text compression
is the block-sorting scheme based on the Burrows and Wheeler Transform
(BWT) [33]. This is analogous to transformation-based image compression
schemes. The text is first divided into a number of blocks. Each block is then
transformed into a form more amenable to compression. The transformation
is done by permuting the characters in each block, so that the characters
occurring in a similar context get aligned near each other. The permuted
block is then compressed using a suitable coder, which exploits the locality
of context of the symbols in the permuted block. During decompression, the
decoder first decodes the permuted block which is then inverse-transformed
(BWT) in order to reconstruct the original text.

3.12.1 The LZ77 algorithm

LZ77 is the first form of Ziv-Lempel coding proposed by Ziv and Lempel
in 1977 [24]. In this approach a fixed-size buffer, containing the previously
encoded character sequence that precedes the current coding position, can be
considered as a dictionary. The encoder matches the input sequence through
a sliding window, as illustrated in Fig. 3.18. The window is divided into
two parts, namely, (i) a search window that consists of the already encoded
character sequence, and (ii) a lookahead buffer that contains the character
sequence to be encoded as shown in Fig. 3.18.

In order to encode a sequence in the lookahead buffer, the search window is
scanned to find the longest match in it with a prefix of the lookahead buffer.
The match can overlap with the lookahead buffer, but obviously cannot be the
lookahead buffer itself. Once the longest match is found, it is coded as a triple
<offset,length,C(char)>, where offset is the distance of the first character of
the longest match in the search window from the lookahead buffer, length
is the length of the match, and C(char) is the binary codeword of the first
mismatching symbol char that follows the match in the lookahead buffer. The
window is shifted left by length -f 1 symbols to begin the next search.

3.12.1.1 Example 3—LZ77 coding: Let the character sequence to be en-
coded be given as • • • baabacbaacbcdbcdbcac • • •. We assume that the size of
the search window is 8 and that of the lookahead buffer is 6. Let us assume
that the substring baabacba in the search window has already been encoded
and the substring acbcdb in the lookahead buffer is to be encoded, as shown
in Fig. 3.18(a). After scanning the search window, the longest match is found
to be the substring 'ac6' of length 3 at a distance 4 from the lookahead buffer.
The character following the prefix 'oc&' in the lookahead buffer is 'c'. Hence
the triple to output is < 4, 3, C(c) >, where C(c) is the codeword for the
character c. Since the match length is 3, we shift the window left by 4 char-
acters.
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Fig. 3.18 LZ77 coding: An example with sliding window.

Now the first character in the lookahead buffer is 'd' as illustrated in
Fig. 3.18(b), and there is no match for 'd' in the search window. Hence
we output the triple < 0,0, C(d) > and shift the sliding window by one.

The longest match in the sliding window is the substring 'bcdbc1 as depicted
in Fig. 3.18(c). It is to be noted that the matching substring starts in character
position 3 in the search window, and it overlaps with the first two characters
bcdbc in the lookahead buffer. Hence we output the triple < 3,5, C(a) > and
shift the sliding window left by 6 characters to continue.

There are many variations of LZ77 coding, mainly to further improve the
performance or implementation efficiency of the scheme. Popular compression
softwares like Zip and PKZip use a variation of the LZ77 coding scheme, called
LZSS coding [26].

3.12.2 The LZ78 algorithm

LZ78 is the other key algorithm in the LZ family proposed by Ziv and Lempel
in 1978 [25]. Instead of using the previously encoded sequence of symbols (or
string) in the sliding window as the implicit dictionary, the LZ78 algorithm
explicitly builds a dictionary of string patterns dynamically in both the en-
coder and decoder. The encoder searches this dictionary to find the longest
match with the prefix of the input string and encodes it as a pair < i, C(S) >,
where i is the index of the matched substring in the dictionary and C(S) is
the codeword of the first symbol S following the matched portion of the input.
A new entry is then added to the dictionary, corresponding to the matched
substring concatenated by the symbol 5. The codeword C(S) is usually a
Huffman-type variable-length code of the source symbol S.

In order to achieve further compression, the index i in the output pair
can be encoded using some Huffman-type variable-length binary encoding
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by exploiting the statistics of the indices. But for the sake of simplicity of
explanation, we avoid detailed discussion here.

3.12.2.1 Example 4-LZ78 encoding: Let us consider the sequence of
symbols bacababbaabbabbaaacbbc. Initially the dictionary is empty. Since the
first input symbol 6 has no match in the dictionary, the encoder outputs the
pair < 0, C(b) > and inserts the first entry 6 into the dictionary with index 1
as shown in Table 3.6.

Table 3.6 Dictionary after Step 1

Encoder output
<0,C(6)>

Index
1

Entry
b

Similarly, the next input symbol a has no match in the dictionary. Hence
the encoder outputs the pair < 0, C(a) > and inserts new entry a at index 2
in the dictionary as indicated in Table 3.7.

Table 3.7 Dictionary after Step 2

Encoder output
<0,C(6)>
<0,C(a) >

Index
1
2

Entry
b
a

Because the next input symbol c has no match in the dictionary, the encoder
outputs the pair < 0, C(c) > and inserts the new entry c at index 3 as shown
in Table 3.8.

Table 3.8 Dictionary after Step 3

Encoder output
<0,C(6)>
<0,C(a) >
< 0, C(c) >

Index
1
2
3

Entry
b
a
c

Now the input symbol a matches with entry 2 in the dictionary, but db fails
to generate a match. So the encoder outputs the pair < 2, C(6) > and inserts
new entry ab at index 4 in the dictionary, as indicated in Table 3.9.
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Table 3.9 Dictionary after Step 4

Encoder output
< 0, C(b] >
< 0, C(o) >
<0,C(c)>
< 2, C(6) >

Index
1
2
3
4

Entry
6
a
c
a6

The next two symbols ab match with entry 4 in the dictionary, but abb
does not have any match. So the encoder outputs the pair < 4, C(b) > and
inserts a new entry abb at index 5 in the dictionary, as shown in Table 3.10.

Table 3.10 Dictionary after Step 5

Encoder output
< 0, C(b) >
< 0, C(o) >
< 0, C(c) >
<2,C(6)>
<4,C(6)>

Index
1
2
3
4
5

Entry
6
a
c
ab
abb

Table 3.11 Final LZ78 dictionary

Encoder output
< 0, (7(6) >
<"" fl (~*(fi\ ^*>

< 0, C(c) >
< 2, (7(6) >
< 4, (7(6) >
<2,C(a)>
< l.C'(b) >
<5,C(a)>
< 6, C(c) >
< 7, C(c) >

Index
1
2
3
4
5
6
7
8
9
10

Entry
6
a
c
ab
abb
aa
bb
abba
aac
bbc

Continuing the above procedure the encoder generates the output pairs
< 2,C(o) >, < 1,C(6) >, < 5,C(o) >, < 6,C(c) > and < 7,C7(c) >, and
builds the dictionary accordingly. The final dictionary is depicted in Ta-
ble 3.11. The encoded output of the sequence is < 0, C(b) >, < 0, C(a) >,
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< 0,C(c) >, < 2,C(6) >, < 4,C(6) >, < 2,C(a) >, < 1,C(6) >, < 5,C(a) >,
<6,C(c)>, <7,C(c) >.

3.12.2.2 Example 5-LZ78 decoding: We now decode the encoded data
to explain how the LZ78 decoding process works. The decoder also dynam-
ically builds a dictionary, which is the same as that built by the encoder.
Initially the dictionary contains nothing. Since the first input pair to the de-
coder is < 0, C(b) >, it first decodes the symbol 6 from the codeword C(b).
As the decoded index is 0, it outputs the symbol b and inserts the first entry
< 1, b > in the dictionary as shown in Table 3.6.

The next input pair to the decoder is < 0, C(a) >. As a result, the decoder
outputs the symbol a and inserts the next entry < 2, a > in the dictionary
as indicated in Table 3.7. The following input pair being < 0, C(c) >, the
decoder outputs the symbol c and inserts the next entry < 3, c > in the
dictionary as shown in Table 3.8.

The next input pair is < 2, C(b) >, which indicates that the new output is
the pattern for entry 2 in the dictionary concatenated by the decoded symbol
6. Since entry 2 represents a, the output will be ab. A new pattern ab is now
inserted in index 4 of the dictionary.

The following input pair is < 4, C(b) >. As a result, the decoder outputs the
string abb and inserts it in the dictionary in entry 5. Analogously, the decoder
reads the next pair < 2, C(a) > and generates the output aa, inserting it in the
dictionary in entry 6. Continuing in a similar fashion, the subsequent decoder
outputs are 66, abba, aac and 66c; and these are inserted in the dictionary at
indices 7, 8, 9, and 10, respectively. The final dictionary is identical to the one
generated in Table 3.11. The final decoder output is bacababbaabbabbaaacbbc,
and it exactly matches with the original input sequence.

Generally the LZ78 algorithm is easier for implementation and less memory-
consuming, as compared to the LZ77. This is because of the simpler data
structure used in LZ78 to output sequence of pairs only, as opposed to the
triples in LZ77. There exist a number of variations of the LZ78 algorithm, the
most popular being the algorithm by Welch [27] known as the LZW algorithm.
We describe this algorithm in the following section.

3.12.3 The LZW algorithm

The inclusion of the explicit codeword C(S) of the symbol S along with the
index i, in the output < i, C(S) > of the LZ78 encoding algorithm, is often
found to be very wasteful. The inefficiency is overcome in the LZW algorithm,
by omitting C(S) and transmitting the index i only. This is accomplished by
initializing the dictionary with a list of single symbol patterns, to include
all the symbols of the source alphabet. In each step, the index of the longest
match from the input in the dictionary is output and a new pattern is inserted
in the dictionary. This new pattern is formed by concatenating the longest
match with the next character in the input stream. As a result, the last
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symbol (or character) of this new pattern is encoded as the first character of
the next one.

3.12.3.1 Example 6-LZW encoding: The LZW encoding algorithm is
explained below with an example to encode the string babacbabababcb.

Table 3.12 LZW dictionary for encoding

Index
1
2
3
4
5
6
7
8
9

10

Pattern
a
b
c

ba
ab
bac
cb

bab
baba
abc

Derived as

initial

2 + a
1 + 6
4 + c
3 + 6
4 + 6
8 + a
5 + c

The dictionary generation is shown in Table 3.12. Initially, the dictionary
consists of single symbol (or character) patterns a, b, and c from the input
alphabet {a, 6, c}. The index of the patterns in the dictionary are 1, 2, and
3, respectively.

After receiving the first character b, the encoder finds the match at index
2. But the pattern ba, with the first two characters, does not have a match
in the current dictionary. Hence the encoder outputs index 2 to encode the
first character 6, and inserts the new pattern ba to index 4 in the dictionary.

The second input character a has a match in the dictionary with index 1,
but ab formed by the second and third characters does not have a match. As
a result, the encoder outputs index 1 to encode a and inserts the new pattern
ab in the dictionary at index 5.

Now the next two characters ba match with the pattern at index 4 in the
dictionary, but bac does not. Hence the encoder outputs index 4 to encode
ba, and it inserts the new pattern bac into the dictionary at index 6.

The following character c now matches with index 3, but cb does not. Hence
the encoder outputs index 3 to encode c, and it inserts cb in the dictionary to
index 7.

The subsequent two characters ba have a match at index 4, but bab does
not. Hence the encoder outputs the index 4 to encode ba, and it inserts the
new pattern bab in the dictionary to index 8.

The next three characters bab have a match in the dictionary to index 8,
but baba does not. Hence the encoder now outputs the index 8 to encode bab,
and it inserts the new pattern baba in the dictionary at index 9.
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The following two characters ab now match with the pattern at index 5 in
the dictionary, but abc does not. Hence the encoder outputs index 5 to encode
06, and it inserts the new pattern abc in the dictionary to index 10.

The subsequent two characters cb have a match at index 7 in the dictionary.
Hence the encoder outputs the index 7 to encode c6, and it stops. As a result,
the output of the LZW encoder is 2 1 4 3 4 8 5 7.

It should be noted that statistical probabilities of appearance of the pointers
from the LZW encoder can be further exploited by using Huffman-coding
type variable length entropy encoding schemes. This may result in further
reduction of the output data, and hence it can enhance the text compression
performance.

3.12.3.2 Example 7—LZW decoding: Here we take the same encoder
output from Example 6, and decode it using the LZW algorithm. The input
to the decoder is 2, 1, 4, 3, 4, 8, 5, 7.

Like the encoder, the decoder starts with the initial dictionary having three
entries for a, 6, c and indices 1, 2, 3. After visiting the first index 2, the decoder
outputs the corresponding pattern b from the dictionary.

The next output is a, corresponding to the second input index 1. At this
point, the decoder inserts a new pattern ba in the dictionary to index 4. This
new pattern ba is formed by concatenating the first character a of the current
output pattern a at the end of the last output pattern 6.

The next input index is 4, which corresponds to the pattern ba in the
dictionary. Hence the decoder outputs ba, and it inserts the new pattern
ab in the dictionary to index 5. The new pattern ab is again formed by
concatenating the first character 6 of the current output pattern ba at the end
of the last output pattern a.

The next input index is 3, which corresponds to c in the current dictionary.
The decoder hence outputs c and inserts a new pattern bac in the dictionary
to index 6. This pattern bac has been formed by concatenating c at the end
of the previous output or matching pattern ba.

The next output of the decoder is ba because of the input index 4. The
decoder now inserts the new pattern cb in the dictionary to index 7. This
pattern is again formed by concatenating the first character b of the current
output ba at the end of the previous output c. At this point, the dictionary
has only 7 entries as shown in Table 3.13. So far the decoding process was
straightforward.

The next input to the decoder is index 8. But the dictionary does not
have any pattern at index 8. This tricky situation arises during decoding, if a
pattern has been encoded using the pattern immediately preceding it during
the encoding process. As a result, the last character of the pattern is the same
as the first character. Hence the decoder creates the output by concatenating
the first character of the previous output with the previous output itself. Since
the previous output was 6a, the decoder outputs bab in the current decoding
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Table 3.13 LZW dictionary for decoding

Index
1
2
3
4
5
6
7

Pattern
a
b
c

ba
ab
bac
cb

Derived as

initial

2 + a
1 + 6
4 + c
3 + 6

step and inserts this new pattern in the dictionary to index 8. The following
input index 5 corresponds to the pattern ab, and hence the decoder outputs
ab and inserts the new pattern baba in the dictionary at index 9. This pattern
fca&a is formed by concatenating the first character a of the current output ab
at the end of the previous output bab.

The next input index 7 corresponds to the pattern cb. The decoder outputs
cb and obviously inserts the new pattern abc in the dictionary and stops. At
this point the final dictionary is exactly identical to the final dictionary that
was formed during the encoding process as shown in Table 3.12 in the previous
example.

3.12.4 Other applications of Lempeh-Ziv coding

LZ coding techniques are not necessarily applicable to text compression only.
Variants of the LZ coding techniques have been found to be effective to com-
press many other datatypes. They can be effectively used to compress general-
purpose data effectively, for archival and storage. LZ coding techniques can
be applied to compress databases (both numeric and text), graphical charts,
geographical maps, and many other special kinds of images. The LZ-based
coding schemes have also been adopted in many international coding stan-
dards.

LZW-based coding has been found to be effective to losslessly compress
different kinds of images. The widely used image file format 'GIF' (Graphical
Interchange Format) is an implementation of the LZW algorithm. This is
very similar to the popular compress utility in UNIX. GIF is very effective in
compressing computer-generated graphical images and pseudo-color or color-
mapped images. TIFF (Tag Image File Format) is another industry standard
based on LZ coding. This is useful for compressing dithered binary images,
which simulate gray scale images through a variation of the density of black
dots. The CCITT (previously ITU-T) Recommendation V.42 bis is a com-
pression standard of data over a telephone network. The compression mode
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of this standard uses the LZW algorithm to compress data to be transmitted
through the modem.

3.13 CONCLUSIONS AND DISCUSSION

In this chapter we have introduced the fundamental principles behind multi-
media data compression. Data compression has great potential in the near
future to improve the efficiency of data mining systems, by exploiting the
benefits of compact and shorter representation of data. This is particularly
important because data mining techniques typically deal with large databases,
and data storage management is a big issue for managing such large databases.
However, the data mining community has hitherto failed to take advantage
of the knowledge in the area of data compression and develop special data
mining techniques based on the principles behind data compression. Never-
theless, there have been limited efforts at usage of data compression to reduce
the high dimensionality of multimedia datasets, with applications for min-
ing multimedia information in a limited manner. Multimedia data mining is
covered in detail in Chapter 9.

We have discussed various issues of multimedia data compression, along
with some theoretical foundations. We presented some basic source coding
algorithms, often used in data compression, in order to introduce this area
of development to the readers. We have described the principles behind the
popular algorithms for image and text type multimedia data. We avoided dis-
cussion on compression of other datatypes such as video, audio, and speech
because it is beyond the scope of this book. The advantages of data compres-
sion are manifold and will enable more multimedia applications at reduced
costs, thereby aiding its usage by a larger population, with newer applica-
tions, in the near future.
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4
String Matching

4.1 INTRODUCTION

Text probably got much more attention compared to other media datatypes,
in research and development for information retrieval and data mining, be-
cause of the wealth of work done in the area of searching patterns in text files
during the last three decades. This resulted in the growth of text process-
ing softwares, text information retrieval systems, digital libraries, etc. The
single most important reason for this growth is the development of numer-
ous classical algorithms and their efficient implementations in string matching
[1, 2]. The results in string matching algorithms influenced the development
of text-based search engines, and these are being widely used in the World
Wide Web.

Text mining is becoming a very practical and important area of develop-
ment. Given the practical importance of classification and search of patterns
in large collection of text data in the Internet, newswire, electronic media,
digital library, large textual databases, and their ability to generate knowl-
edge from these vast resources, the development in the area of text mining
continues to increase. Development of string matching algorithms also influ-
enced the areas of computational biology, and molecular biology, along with
the success of the Human Genome Project. String matching algorithms have
been used in DNA search, DNA sequencing, and many other problems in
Bioinformatics as well. In our judgment, understanding of the principles in
string matching is important for further development in data mining and its
applications in multimedia as well as Bioinformatics.
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The remaining part of this section introduces the preliminaries of string
matching. Classical linear order string matching algorithms are described in
Section 4.2. The use of string matching in Bioinformatics is highlighted in
Section 4.3. Issues in approximate string matching are dealt with in Sec-
tion 4.4. Compressed string matching is considered in Section 4.5. Finally,
Section 4.6 concludes the chapter.

4.1.1 Some definitions and preliminaries

Before we proceed to detailed algorithmic description, it is essential to prepare
the readers with some basic definitions.

Alphabet: Symbols, or characters, are considered to be the basic el-
emental building blocks in string matching. An alphabet is a specific set of
symbols. It is usually a finite set. For instance, S = {a, 6, c, d, e} is an
alphabet containing symbols a, 6, c, d, and e.

String: A string is a sequence of instances of symbols, or characters, over
a finite alphabet E. For instance, both 'baacbcba' and 'adaeabedeed'
are strings over the alphabet E = {a, 6, c, d, e}.

The length of a string s, say, is the number of instances of the symbols or
characters in the string. The string s may be expressed as s = BIS? • • • sm,
where each s» is an instance of a symbol, or character, from the alphabet and
ra is the length of the string s. Often length of the string is represented as
\s\. An empty string, c, is a special string with length 0. The concatenation
of two strings x = x\x<z • • • xp and y = 7/13/2 • • • 2/g, denoted by x y, is equal to
the string xiX2 • • • xpy\yi • • • yq- The length of x y is p + g, where p and q are
the lengths of strings x and y, respectively. As an example, the concatena-
tion of two string 'straight* and 'forward' is 'straightforward'. The
concatenation of the empty string e with any string is that string itself.

Substring: A string x = x\x^ • • • Xk is a substring of another string
y — 2/12/22/3 • • • 2/n> if and only if there exists an z, 0 < i < n, so that j/t+j-i = %j
for j = 1,2, . . . , /c.

As an example, the string 'bad1 is a substring of a string 'dabadaba\
Hence the substring of a string can be formed by deleting zero or more char-
acters from the beginning and/or end of the string. The empty string is a
special substring of any string, and hence it is the shortest length substring
of any string. The longest substring of a string is the string itself.

Suffix: The suffix of a string s is a substring formed by deleting zero or
more characters from the beginning of s. Hence y is a suffix of string s, if there
exists a substring x such that s = x y. In other words, suffix of s = s\S2 • • • sn

is any substring sn_jSn_J+i • • • sn where 0 < j < n. The empty string e is
the shortest suffix and the string itself is the longest suffix of any string. Any
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suffix other than the empty string and the string itself is called a proper suf-
fix. As an example, 'oil' is the proper suffix of a string 'turmoil'. This is
pictorially depicted in Fig. 4.1 (a).

Fjg. 4.2 Examples of (a) suffix, (b) prefix, and (c) suffix of prefix of a string.

Prefix: The prefix of a string s is a substring formed by deleting zero or
more characters from the end of 5.

Hence x is a prefix of s if there exist a substring y so that s = x y. In other
words, prefix of s = Sis2 • • • sn is any substring Si§2 • • • Sfci where 0 < k < n.
The empty string e is the shortest prefix and the string itself is the longest
prefix of any string. Any prefix other than the empty string and the string
itself is called a proper prefix. As an example, '•human' is the proper prefix
of the string "'humanity.'" This is pictorially depicted in Fig. 4.1(b).

It is interesting to note that the substring 'man' is a suffix of a prefix of
the string "'humanity''1 as pictorially depicted in Fig. 4.1(c).

Factor: A string y is a factor of a string s if s can be represented as
s = xyz, where x and y are the prefix and suffix of s. The substring 'man'
is a factor of the string 'humanity'. In other words, a factor of a string is
a suffix of a prefix or prefix of a suffix of a string.
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4.1.2 String matching problem

String matching essentially is the technique of finding the occurrence of a
particular string, called a pattern, in another string called the text. The
String matching problem can be formulated as follows.

Let us assume that a pattern p = p\p? • • • pm of length ra and a text
t — M2 • • • *n of length n are two strings formed over the same finite alphabet
£ such that m < n. We say that the pattern p occurs in text t at the begin-
ning of text location k if 1 < k <n — m and tk+i-i = Pi for 1 < i < m. The
string matching problem is the problem of finding all the text locations where
the given pattern p occurs in the given text t. The string matching problem
has been depicted pictorially in Fig. 4.2.

Fig. 4.2 The string matching problem.

Example 1: Let us assume a text string t = lcbbababaababacaba'
and a pattern p = '6 a 6 a' over the finite alphabet S = {a, 6, c} as shown in
Fig. 4.2. The pattern '6 a 6 a' occurs in text locations 3, 5, and 10, respec-
tively. Note that locations 3 and 5 overlap each other. A valid string matching
algorithm should be able to recognize such overlapping occurrences as well.



INTRODUCTION 147

There are different interesting variations of the string matching problem.
In many applications, the search pattern may not be a simple sequence of
characters or symbols. It could be fully or partially specified. If all the
symbols or characters pi for 1 < i < m in the pattern p = pip2 • • • pm are
definitely known, the pattern is called a fully specified pattern. If one or more
symbol PJ for any 1 < j < m in the pattern is not specifically known, the
pattern can be called a partially specified pattern. An unspecified symbol in
the pattern can be denoted by a "don't care" or a "wild card" character.

As an example, let us assume an alphabet E = {A, B, C, D}. A pattern
P = 1B C C A* is fully specified. However a pattern P = B C * A is partially
specified because the third symbol * in P is not known. If * can be any of the
symbols from the alphabet S, the occurrence of pattern P could be the occur-
rence of any one of the possible patterns 'B C A A\ 1BC B A\ 'BCC A\ and
'BCD A\ This unspecified symbol * in P is call the fixed length don't care
(FLDC) character. However if the pattern P consists of a don't care character
4> which can be any substring {$, $$, $$$, ...} of any arbitrary length, then
the don't care character 0 is called the variable length don't care (VLDC) char-
acter. As an example, let us assume that the partially specified pattern is P
='B C (j> A\ Since <f> can contain any pattern from the infinite set of substrings
{$, $$, $$$, ...}, the possible occurrences of the pattern in the text will be any
matched substring beginning with the prefix '£? A' and ending with the suffix
A - for example, 1BCA\ 'BCAAAA', 'BCABCBDBCDDBX, etc.
Partially specified pattern matching is useful in searching for text information
when the pattern is partially known.

The pattern may also consist of a finite set of sequences instead of just a
single string. Here the pattern matching problem can be extended to search
for occurrence(s) of any one of the members of the set in the text, while
reading the text once only. The patterns of interest may contain wild cards as
explained above. They may also contain regular expressions. Use of regular
expressions in patterns can be very powerful, because a set of search patterns
can be expressed by using a regular expression in the form of a simple string
as well as concatenations, unions, and repetitions of other subexpressions.
Obviously, the algorithms to solve such problems are very complex, and they
still remain a challenge in computer science.

The matching criteria can also vary by permitting slight limited difference
between a pattern and its occurrences in the text. This type of pattern match-
ing is popularly known as approximate matching and is particularly useful in
information retrieval, text processing, and molecular and computational bi-
ology. Approximate matching is a powerful tool in automatic detection of
spelling errors in texts, distance measures in DNA analysis, DNA sequence
and matching, etc. The progress in simple and approximate string matching
may have significant influence in text mining and Bioinformatics as well.
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Fig. 4.3 Example of brute force approach to string matching.

4.1.3 Brute force string matching

In a brute force approach, the string matching algorithm compares a pat-
tern character by character in each and every location of the text. Starting
at the beginning of the text string, we compare the characters of the pat-
tern one after another with the corresponding characters in the text, until
a mismatch is found or the complete pattern is exhausted. If the pattern is
exhausted, we claim to have found a match at the beginning of the text. If
a mismatch of character is detected before the pattern is exhausted, then the
pattern does not occur at the beginning of the text. We start the matching all
over again at the next character in the text, and continue the same procedure.

Example 2: We illustrate how the brute force pattern matching algorithm
finds occurrences of a pattern '6o6a' in a text 'cbbababaababacaba' in
Fig. 4.3. The algorithm starts by comparing the first character "6" of the
pattern with the first character V of the text string. The broken line con-
necting them shows that these two characters don't match. Hence the pattern
gets shifted to the second character location in the text, in order to start the
pattern comparison all over again from the second character location in the
string. In the second step, the first character "6" of the pattern is compared
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with the second character '&' of the text. Since they are the same, this is
shown by connecting them with a solid line. Now the second character of the
pattern "a" is compared with the next character '6' in the text, and they are
shown to be connected by a broken line as they mismatch in this location.
Hence the pattern matching starts all over again at text character location
3 now. We can see that all the four consecutive characters '&', 'a', '6', and
'a' in pattern p are now matched with the consecutive four character in the
text starting in location 3, and they are shown to be connected by solid lines.
Hereby we have found the first occurrence of the pattern in the text at lo-
cation 3. The pattern is now shifted to restart the matching process from
text character location 4. The first character "6" does not match with the
character 'a' in location 4, and hence the pattern is shifted to location 5. Here
we find that the pattern '6 a b a' matches with the consecutive four characters
in the text starting in location 5 and hence determines an occurrence of the
pattern in location 5 of the text. Continuing in the same manner, the other
occurrences of the pattern is obtained at text character location 10, as shown
in Fig. 4.3. We now formally describe the brute force algorithm for pattern
matching.

BRUTE-FORCE-STRING-MATCHING (p, t)

1. Compute pattern length, m <— \p\;

2. Compute text length, n <— \t\;

3. Initialize text pointer, s <— 1;

4. Initialize pattern pointer, i <— 1;

5. if pi = ta+i (i.e., ith character in pattern matches with (s+i)th character
in text) then increment pattern pointer, i <— i + 1,
else go to step 7;

6. if (i < m) then go to step 5;

7. if i > m (i.e., search is successful) then print "Pattern occurs at text
position" s;

8. Increment text pointer, s <— s + 1 for next search;

9. if s < n — ra + 1 (i.e., the text is not exhausted) then go to step 4 to
repeat above.

The above brute force approach requires the input text string to be buffered,
because the text needs to be backtracked whenever there is an unsuccessful
match with a symbol in the pattern. The computational complexity of the
algorithm is O(m * ri) in the worst case. However, there are efficient algo-
rithms for string matching, which take only a linear order of computational
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complexity O(m + n) in the worst case. Moreover, there is no need of buffer-
ing, because these algorithms do not backtrack in the event of occurrence of
a mismatch in a pattern symbol.

4.2 LINEAR-ORDER STRING MATCHING ALGORITHMS

String matching algorithms with linear-order computational complexity are
very useful in many practical text-based applications such as edit, search and
retrieval of text, and development of search engine, and therein lies its possi-
ble influence in text data mining. In this section, we first discuss a practical
approach of developing a linear-order string matching algorithm with finite
automata, in order to avoid the problem of buffering due to backtracking in
the text itself. This definition of finite automaton and its property of not
backtracking when there is a mismatch has influenced the development of the
Knuth-Morris-Pratt algorithm [1] in 1977 as the first linear-order algorithm
with computational complexity O(m + n). This was followed by flurries of
activity in the computer science community to develop efficient linear-order
algorithms for string matching, along with exploration of simple implementa-
tion of them. In the remaining part of this section, we describe some of the
classical linear order algorithms that established the foundation of research
and development in string matching. These include the Boyer-Moore [2],
Boyer-Moore-Horspool [3], and Karp-Rabin [4, 5] algorithms.

4.2.1 String matching with finite automata

Finite automata has been used as a tool in string matching. For every pattern
p, we can always build a finite automaton, which we call a string-matching
automaton for the corresponding pattern. The string-matching automaton is
built from the pattern as a preprocessing step before matching. The text is
then scanned through the automaton to find occurrences of the pattern in the
text. A finite automaton M can be considered as a 5-tuple (Q, QQ, S, E, 6),
where

• Q is a finite set of states of the automaton,

• Qo €• Q is a special state called the start state,

• S C Q is a distinguished set of states called the stop states,

• S is the finite input alphabet, and

• 6 is a function from Q x E into Q, called the transition function of the
automaton M.

To understand string matching with finite automata, it is not necessary
for readers to have a complete understanding of the automata theory. The
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Fig. 4.4 Finite automata: (a) state diagram, (b) state transition table, and (c) pattern
matching example.

automaton M always begins at the start state QQ and reads the characters
of the string sequentially one at a time. If the automaton M is in a state <&
and reads a character or symbol a € E, it makes a transition from state g»
to another state, say <?.,, and we denote the transition as qj ; = 6 (<?», a}. If the
state qj e 5, we say that the automaton M has accepted the string scanned
so far. The finite automaton can be represented by a state-transition diagram
as shown in Fig. 4.4 (a). We explain the finite state diagram for a pattern
'a 6 a' with three types of nodes as follows:

A start node. This represents the start state
state 0 is the start state.

of M. In Fig. 4.4(a),

• A stop node. In simple string matching there is only one stop node and
the machine transits to this state when a valid occurrence of the pattern
appears in the string. In Fig. 4.4(a), state 3 represents the stop state.
This is specially indicated by the shaded node in Fig. 4.4(a).

• Finite number of internal or read nodes. These are the nodes repre-
senting the states of the machine other than the start or stop nodes.
The machine reads only one character or symbol of the string in each of
these nodes.
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Example 3: We illustrate an example of string matching with finite
automaton in Fig. 4.4. In this example, we assume that the pattern is p =
"a6a" and the text to be searched ist = 'a66a6a6a6aa' over the alphabet
E = {a, 6}. State diagram of the finite automaton is shown in Fig. 4.4(a) with
four states Q = {0, 1, 2, 3} of which qo = 0 is the start state and 5 = 3 is the
stop state. The state transition function 6 is explained through the tabular
representation in Fig. 4.4(b). The text and the corresponding state of the
automaton, after it scans each character of the text, is shown in Fig. 4.4(c). As
indicated in Fig. 4.4(c), there are three occurrences of the pattern p = "a 6 a"
in the text t = iabbabababaal because the automaton goes to the stop state
at character positions 6, 8, and 10 in the text. Since the pattern length is 3, the
matched locations of the pattern in the text correspond to character positions
4, 6 and 8 respectively The matched patterns in the string are marked by two
underlines and one overline in the text of Fig. 4.4(c).

4.2.1.1 Computational complexity: Once the state diagram (or the state tran-
sition table) of the finite automaton of a pattern is constructed, we can scan
the text to search for the pattern by comparing each text character only once,
not requiring any backtrack when there is a mismatch. Hence we can find all
the occurrences of the pattern in the text of length n in O(n) time. This is a
major improvement as compared to the naive brute force approach to pattern
matching of Section 4.1.3. However, there is an overhead for preprocessing
the pattern in terms of time and space complexity in order to (a) construct
the state diagram or the state transition table for the pattern and (b) store
the table in the memory for pattern matching. The state transition table
contains ra entries for a pattern of length m and for each of the symbol in
the alphabet S. As a result, the preprocessing requires O(m * |S|) time to
construct the state transition table. Hence total computational complexity for
string matching using the finite automaton becomes O(n + m* |E|). However,
m is usually much smaller compared to n. Therefore for small alphabet S the
computational complexity, on the average, becomes linear in order.

4.2.2 Knuth-Morris-Pratt algorithm

The linear-order O(m + n) algorithm proposed by Knuth, Morris, and Pratt
[1] is the oldest and one of the most popular classical algorithms for string
matching. The fundamental idea behind this algorithm is to avoid back-
tracking on the text when a mismatch occurs, by exploiting the knowledge of
the matched substring in the text prior to the mismatch. During the search
process, all the characters in the text are read forward sequentially one af-
ter another. Unlike constructing the state transition table by preprocessing
the pattern in O(m|E|) time, as in the finite automata based technique, the
Knuth-Morris-Pratt algorithm first creates an auxiliary table Next with m
entries in O(m) time by analyzing the pattern p. This Next table is then used
to shift the text forward by Next(i) characters in the event of a mismatch at
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the ith character in the pattern in O(n) time, where Next(i) is the ith entry
in this table. Hence the overall complexity of the algorithm is O(m + n). We
have explained this through a diagram in Fig. 4.5.

F/g". 4.5 Generation of the Next table, (a) First k characters of p matches with the
text, (b) p is shifted by k — i positions right, because (c) first i characters of p is also
suffix of the first k matched characters.

As described in Fig. 4.5(a), if there is a mismatch at the jth symbol of the
text with the (k + l)th symbol (pk+i) of the pattern p = pip? • • • pm, then the
prefix pip2 • --pk is the same as the substring tj-ktj-k+i • • • ij-\ in the text,
which is same as the suffix of the text matched so far. Hence we can decide
how much the text needs to be shifted forward in the event of a mismatch,
by observing the already-matched portion of the pattern only. This shift is
dependent on the structure of the pattern and the position of mismatch in the
pattern. Therefore the Next table is independent of the text, and it can be
generated by analyzing the pattern itself before scanning the text. In order
to determine the kth entry in the Next table, we just need to find the longest
overlap of a proper prefix of pattern p with a suffix of the already-matched
portion of the pattern p as shown in Fig. 4.5(c). Precisely,

Next(k] = max{z : i < k and pip2 •••pi= pk-i+ipk-i+2 • • -Pk}- (4.1)

To reiterate, the value of Next(k) is the maximum i < k, such that the
prefix pip2 "-Pi of the pattern p = pip2 • • -pm is a suffix p\p% • • -pk-i, that
is, Pip2 • • -Pi = Pk-i+i • • 'Pk-\- The value Next(k) is assigned to be 1 if such
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Fig. 4.6 Generation of the Next table for pattern p = "abcdabcz."

a prefix does not exist, indicating a prefix that is an empty string e only.
To compute Next(k), the pattern pip2 • • ~Pk-i is overlapped with itself by
sliding one copy of itself over another, character by character from left to
right, until all the overlapping characters match or there is none left to slide.
The overlapping substring then defines the desired prefix, and Next(k) is the
length of the overlapping prefix plus 1. We demonstrate this with an example
in Fig. 4.6 to compute the Next table for the pattern p = "abcdabcz."

The Next value for the first character of the pattern is always 0 because
there is no mismatching substring prior to the first character. In Fig. 4.6,
we show the pattern overlapped with itself. The left-hand side of the vertical
line shows the substring p\p^ • • -Pj-i as well as the overlapping of the longest
prefix of this substring with its suffix, for the computation of Next(j). For j
= 2, 3, 4, and 5, the overlap length is 0 because only the empty string e can be
the longest prefix, which is also a suffix of all the substrings 'a', 'a 6', 'a&c',
and labcd\ respectively, as shown in Fig. 4.6. Hence the initial values of
Next(2), Next($), Next(4) and Next(5) are 1's. For j = 6, 'a' is the longest
prefix that is also a suffix of the substring 'abeda\ Since the overlap length
is 1, the value of Next(6) becomes 2. For j = 7, the longest prefix of the
substring labcdaV is 'a6', that is also a suffix of labcdab\ Now the value
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of Next (7) is 3, because the overlap length is 2. Similarly 'a&c' is the longest
prefix and also a suffix of the substring 'abcdabc1 for j = 8, and accordingly
the value of Next(S) is 4.

These Next(j) values can be considered during the string matching in the
event of a mismatch of the jth character of a pattern with the ith character
of the text, and accordingly the pattern is shifted so that the next character
in the text after mismatching tj+i can now be aligned with pNext(j)+i m the
pattern to continue the forward matching without backtracking.

We may further improve the Next table by considering the actual symbol
causing a mismatch. Let us consider the above example with the initial Next
table as shown in Fig. 4.6. If there is a mismatch between a text character
ti and pattern symbol pj (i.e., the second 'c' in the pattern), then the next
comparison is done between the same ti and p$ (= pNext(7))- However, the
comparison will fail again because ps is also the same character 'c' and will
shift the comparison to pi as Next (3) = 1. Hence we can further improve the
Next table by taking the actual symbol causing the mismatch into considera-
tion. The modified Next(k) (final value) is expressed as

Next(k) = max{z : i < k and pip2 • • -pi = pk-i+ipk-i+2 --'Pk and Xi ̂  Xk
(4.2)

Using this definition, the final values of the new Next table are computed as
shown in Fig. 4.6. For example, the initial value of Next(5) is 1. However,
p5 = p1 = 'a', and hence we replace the initial value of Next(5) by the value
of Next(l) that is 0. Similarly, initial value of Next(6) is 2. Since p& = p2
= '6' and PQ ^ p\ (=j>jvezt(2))> the final value of Next(6) is 1. Iterating this
procedure for all the entries in the Next table, we generate the final values of
Next as depicted in Fig. 4.6. The formal algorithm to generate the Next table
is shown below.

GENERATE-NEXT-TABLE (p)

1. Initialize pattern pointer, j «— 1;

2. Initialize overlap length of the patterns, k <— 0;

3. Initialize Next table, Next(l) <— 0 (special value for mismatch at pi);

4. while (k > 0 and PJ j^ pk) do k <— Next(k);

5. Increment pattern pointer, j <— j + 1;

6. Increment overlap length, k <— k + 1;

7. if (PJ = pk) then Next(j) <— Next(k) else Next(j) <— k;

8. if (j < m) then go to step 4;

9. Stop.
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The string matching algorithm using the above Next table is described be-
low.

KNUTH-MORRJS-PRATT-STRING-MATCHING (p, t, Next)

1. Initialize the pattern index, j <— 1;

2. Initialize the text index, k <— 1;

3. Set length of the pattern, m <— |p|;

4. Set length of the text, n <— |t|;

5. while j > 0 and PJ ^ ti (i.e., there is a mismatch) do
shift pattern pointer (j <— Next(j});

6. Advance text pointer, i <— i + 1;

7. Advance pattern pointer, j'«— j' + 1;

8. if j > m (i.e., match is successful) then
print "pattern occurs at text index" i — m
else shift pattern pointer, j <— Next(j).

9. if i < n and j < m (i.e., matching is not complete) then
go to step 5 to continue pattern matching
else Stop.

Example 4: An example of pattern matching with the Knuth-Morris-
Pratt algorithm is shown in Fig. 4.7. We consider finding the occurrences of
a pattern p = "babab" in a text t = 'abababababaabababa'. First we
compute the next table [0, 1,0, 1, 3] for the pattern p = "babab" as shown
in Fig. 4.7(a). Matching details are depicted in Fig. 4.7(b). The indices i and
j represent, respectively, the character positions in text and the pattern being
matched. The symbol "y" for ti = PJ represents a match of the text character
ti with the corresponding pattern character PJ. The symbol "Y" indicates
occurrence of the pattern p ending at the text position i shown by a circle.
The symbol 'W represents mismatch of ti and corresponding PJ . Whenever
the result of comparison ti = PJ is either Y or N, j is replaced by Next(j).
For i = 1 and j = I in the figure, we witness the first mismatch. This is
indicated by the symbol "N" and hence the value of j = I is replaced by
j = Next(l) = 0. Both i and j are incremented and the characters PJ and ti
are compared, until there is a mismatch or occurrence of the end of the pattern
in the text. We witness the end of occurrence of the pattern at i = 6 and hence
the text location 2 is marked by a down arrow (|) to indicate the beginning of
the first occurrence of the pattern in the text. Similarly, the pattern occurs in
the text beginning at indices 4, 6 and ending at indices 8 and 10, respectively.
At i = 12, the text character £12 doesn't match with the corresponding pattern
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character p5, and hence j = 5 is replaced by Next(5) = 3. Again ti2 doesn't
match with p3 and hence j is replaced by Next(3) = 0 again. Both i and j are
incremented and matching continues forward. The next pattern occurrence
is obtained after we find the character match at i = 17, and hence the match
occurs beginning at i = 13.

4.2.2.1 Computa tional complexity: The computational complexity of Knuth-
Morris-Pratt algorithm is O(ri) in both the worst and average cases for the
pattern matching phase. By analyzing the matching algorithm, it can be
shown that the assignment j <— Next(j) in step 5 never exceeds the total exe-
cution of the increment operation i <— i +1 in step 6. The pattern is therefore
shifted to the right for a total of at most n times, and hence the computation
complexity of the matching phase is O(ri). Similarly, we can show that the
processing time for initialization of the Next table is of the same order O(m).
As a result, the worst case overall computational complexity of the algorithm
is O(m + n). The worst case computation time happens when a Fibonacci
string pattern is matched in a text.

F;£. 4.7 Example of Knuth-Morris-Pratt pattern matching algorithm with pattern
p = "6a6a6" and text £ = 'abababababaabababa\



158 STRING MATCHING

4.2.3 Boyer-Moore algorithm

Boyer and Moore proposed their algorithm for string matching [2] around the
same time that Knuth, Morris, and Pratt came out with theirs, in 1977. Both
the algorithms became historically famous in the research and development
of string matching, mainly because of their application to text processing.
Although the computational complexity of both the algorithms is on the av-
erage linear, but Boyer-Moore algorithm is likely to be more efficient than
the Knuth-Morris-Pratt algorithm for a relatively longer pattern p and rea-
sonably large alphabet E.

The key insight of the Boyer-Moore algorithm is that some of the characters
in the text can be skipped entirely without comparing them with the pattern,
because it can be shown that they can never contribute to an occurrence of the
pattern in the text. In Boyer-Moore algorithm, although the text is scanned
left to right, comparisons of the pattern and the text are done backwards right
to left along the search window while reading the longest suffix of the search
window that is also a suffix of the pattern.

The first comparison is made between the last pattern character pm and the
text character tm, where m is the length of the pattern p. If pm mismatches
with tm and the character tm does not at all appear in pattern p, then it is a
wastage in comparing the first m — 1 characters of the pattern with the first
m— 1 characters of the text since the pattern cannot occur in any of the first m
positions of the text. As a result, the pattern can be shifted safely m places to
the right so that the next comparison happens between pm and t<2m. Consider
searching for a pattern, say "ababz", in a text which does not contain the
character '2' in any of its positions. The total number of comparisons in
the text will then be only ^ instead of n. This is a significant performance
improvement as compared to prefix comparison-based string matching, such
as Knuth-Morris-Pratt or the finite automaton-based algorithms.

In general, if pm does not match with ti and ti does not appear in the
pattern p = p\p^ • • -pm, then we simply ignore comparing all the previous
m — 1 text characters and shift the pattern m places to the right of ti in the
text. This is illustrated with an example in Fig. 4.8(a) for a pattern "6c6a6"
of length five, aligned with the text beginning at index 12. Here p5 = '&'
does not match with tie = 'd' and 'd' does not appear in any position of the
pattern 'bcbab'. Hence the pattern is shifted right by five places and aligned
with the text beginning at index 17, as shown in Fig. 4.8(b), such that further
comparison resumes from this location.

On the other hand, if pm ^ ti and tt does appear in the pattern such that
the rightmost appearance of ti in pattern is pm-j»then the pattern can safely
be shifted by j places to the right of £» in the text in order to align pm-j with
U. Thereafter, comparison of pm starts again with ti+j. As an example, pm =
PS = '&' does not match with ti = £21 = 'c' as shown in Fig. 4.8(b). However,
'c' appears in the pattern and its rightmost appearance is pm-j = P2 — 'c'.
Hence the pattern '6c6a6' is shifted right by j = 3 places hi order to align
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Fig. 4.8 Example of skipping character comparisons in Boyer-Moore algorithm for
pattern matching, (a) Current pattern position, (b) pattern completely shifted right
because 'd' does not appear in the pattern, (c) pattern is shifted by three positions to
align with character 'c'.

P2 = V with £2i = 'c', as indicated by the curved arrow in Fig. 4.8(c), and
further comparison of p$ resumes with text character ti+j = £24-

If a match is found between pm and ti, then the preceding characters in
the text from t{ are compared sequentially right to left with the corresponding
positions in the pattern until there is a mismatch or the pattern is completely
matched. If the pattern gets completely matched, this implies that the pattern
occurs at location i. Hence the pattern is shifted by one place to the right,
and the matching procedure resumes.

The number of positions to slide forward, upon mismatch, depends on the
character ti being matched with the rightmost character pm of the pattern.
These numbers can be stored in an array or table, say skip with |E| entries
in the table, where E is the alphabet over the text and the pattern. The
entry for a symbol a e E in the skip table is skip(a) =m— j when PJ is the
rightmost occurrence of cr in pattern p, and skip(a] = m if a does not appear
in the pattern at all. Hence we can compute the skip table using the following
algorithm.
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GENERATE-SKIP-TABLE(S, p)

1. Set pattern length, m <— |p|;

2. Initialize sfcip table, skip(a) — m for all symbols a 6 S;

3. Initialize pattern index, j <— 1;

4. for jth character PJ in the pattern, set skip(pj) <— m — j;

5. Increment pattern index, j <— j -I-1;

6. if j < m (i.e., the pattern is not complete) then go to step 4;

7. Stop.

The nature of shift of the pattern has been explained with an example in
Fig. 4.9 to find the occurrences of the pattern string 'match' in the text string
'one of them matches and others mismatch from'. The procedure requires only
19 character comparisons, as opposed to 44 or more comparisons by Knuth-
Morris-Pratt or the finite automaton-based string matching algorithms.

When a match is found between pm and it, subsequent comparisons are
made with preceding characters in the text from ti sequentially right-to-left
with the corresponding positions in the pattern. If a mismatch is found at
PJ (i.e., PJ 7^ ti-m+j}, then the suffix u = pj+ipj+2 • • -pm of length m — j of
the pattern is said to match with the text substring u = ti-m+j+i • • • ti. If
the rightmost occurrence of the mismatching character ti-m+j in the pattern
is Pm-k, then the pattern is then shifted by k positions right from the mis-
matching position in the text to align pm-k with ti-m+j and the matching
procedure resumes further. However, the shift will be only one position right
if j < m — fe, in order to avoid negative shift to align pm-k with tj_m+J.

It is also possible that a greater shift is obtained, as compared to the above
case, when a mismatch occurs after a partial match of a substring. The idea is
to find a suffix u = pj+ipj+% • • -pm, occurring in another pattern, as a factor
of p. Then the pattern can be shifted safely forward to the right, so that
u = ti-m+j+i • • • ti in the text matches with the next occurrence of u in the
pattern. If no such factor exists in the pattern, we cannot safely move the
whole pattern right to the mismatching character. In this case, the algorithm
computes the longest prefix v of p that is also a proper suffix of u. The pattern
is then shifted by m — \v\ positions to align with v in the text. The possible
shift can be precomputed from the pattern itself and stored in an array or
'shift' table.

During the search stage, the shift for mismatch at pattern location PJ and
mismatching text character ti is chosen as max{skip(ti), shift(j)}.

The Boyer-Moore search algorithm has worst-case computational complex-
ity of the order O(m * n). However, it is sublinear on the average case. Many
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Fig. 4.9 Example of Boyer-Moore pattern matching.

variations of Boyer-Moore idea have been proposed to define worst-case algo-
rithms of linear order [2]. Although it theoretically provides high-performance,
the Boyer-Moore (as well as Knuth-Morris-Pratt) algorithm requires com-
plicated preprocessing of the pattern before beginning the actual search of
occurrences of the pattern in the string. Hence the Boyer-Moore algorithm,
in spite of its promise of sublinear performance on the average, has not been
used in many applications in its original form.

Horspool was the first to propose a very simplified version of the Boyer-
Moore algorithm [3], by dispensing the processing and use of the shift array
all together. It uses a variation of the original skip array only, and it en-
sures linear-order computational complexity on the average as well. This is
popularly known as the Boyer-Moore-Horspool algorithm for string matching.

4.2.4 Boyer-Moore-Horspool algorithm

In the Boyer-Moore-Horspool algorithm [3], we compare the text character £»
with the last character pm of the pattern. If they match, then we compare the
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preceding characters of the text with corresponding characters in the pattern
sequentially right to left, until we detect either an occurrence of the pattern
or a mismatch on a text character. Irrespective of the match, we slide the
pattern according to the next occurrence of the character ti in the pattern.
The number of positions to be moved is determined by the value of skip(ti).

Computation of the skip table in the Boyer-Moore-Horspool algorithm
has a subtle difference with the original skip table definition proposed in the
Boyer-Moore algorithm. If we carefully observe the skip table generation
procedure in the Boyer-Moore algorithm, we find that the value of skip(pm)
is always 0. In the Horspool version, skip(pm) = m if pm is unique within
the pattern (i.e., the character pm does not appear in any other location in
the pattern); otherwise skip(pm) = m — fc, where pm-k is the penultimate
(rightmost) appearance of the character pm in the pattern. The preprocess-
ing algorithm for computation of skip table in the Boyer-Moore-Horspool
algorithm is as follows:

GENERATE-SKIP-TABLE(£, p)

1. Set pattern length, m «— \p\;

2. Initialize skip table, skip(a) = m for all symbols a € S;

3. Initialize pattern index, j <— 1;

4. for jth character PJ in the pattern, set skip(pj) <— m — j;

5. Increment pattern index, j <— j + 1;

6. if j < m — 1 then go to step 4;

7. Stop.

Note that the preprocessing algorithm for computation of skip table in the
Boyer-Moore-Horspool algorithm differs from the computation of the skip
table in the Boyer-Moore algorithm only in step 6. Here we now have "if
(j < m) then go to step 4." Since step 4 is iterated here for j = I to m — 1,
the value of skip(pm) is never zero. This value will be m if pm is unique, while
it becomes m — j if PJ is the penultimate appearance of pm in p. We show
in Fig. 4.10 two examples of skip tables, generated for patterns "abode" and
"aecde", using the Boyer-Moore (BM) and Boyer-Moore-Horspool (BMH)
algorithms.

The Boyer-Moore-Horspool pattern matching algorithm is formally pre-
sented below.

BOYER-MOORE-HORSPOOL-ALGORITHM(£, p, £)

1. Initialize pattern length, m <— \p\;

2. Initialize the text length, n <— |t|;
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3. Compute skip table GENERATE-SKIP-TABLE(S,p);

4. Initialize text pointer, i <— 0;

5. Initialize pattern pointer, j <— m;

6. while j > 0 and ti+j = PJ (i.e., string character matches with pattern
character) do move pattern pointer to left, j <— j — 1;

7. if j = 0 (i.e., match is successful) then
print "pattern occurs at text index" i 4- 1;

8. Shift the text pointer, i <— i 4- sfczp(£i+m);

9. if i < n — m (i.e., text not yet fully traversed) then
go to step 5 to continue matching process.

10. stop.

Alphabet(I) = {a,b, c, d, e, f, g}

Pattern l = a b c d e

Skip Table 1:

a e Z
a
b
c
d
e
f
g

BM

4
3
2
1
0
5
5

BMH

4
3
2
1
5
5
5

Pattern2 = a e c d e

Skip Table 2:

o e Z
a
b
c
d
e
f

g

BM

4
5
2
1
0
5
5

BMH

4
5
2
1
3
5
5

Fig. 4.10 Example of skip tables.

Example 5: Here we demonstrate the effectiveness of the Boyer-Moore-
Horspool algorithm in matching patterns from simple English text. An ex-
ample is shown in Fig. 4.11. The alphabet considered in this example is E =
{a, c, d, e, /, /i, i, m, n, o, r, s, t, ' '}. The symbol ' ' represents the blank
character. Since the pattern "match" has only five characters {a, c, /i, m, £},
the rest of the characters in S are considered to belong to the don't care
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category as denoted by $ in Fig. 4.11. The broken arrows (j.) represent the
position where the text character (t,) mismatches with the corresponding pat-
tern character, and hence the pattern needs to be shifted right by skip(ti).
The value of skip(ti) is shown as the label of each broken arrow, that is aligned
with each mismatching character ti and the last character of the pattern (i.e.,
P5 = '/0-

Z= { a, c, d, e, f, h, i, m, n, o, r, s, t, ' '}

$ e Z - {a, c, h, m, t}, pattern = "match" , length = 5

skip( m ) = 4
a) =3

= 2
skip{ c ) = 1

match
mate

match

match

match
match

mate
match

is i5 „ J t *1 , , 1
one of them matches and others mismatch from

F/£. 4. JJ Example of Boyer-Moore-Horspool string matching.

For example, the matching process begins by comparing £5 = 'o' with p$ —
lh\ Since they mismatch, the pattern is shifted by 5 positions right because
skip(o) = 5. Now the text character t10 = 'e' is compared with p5 = '/i'.
Since they mismatch, the pattern is again shifted by 5 positions right because
skip(e) = 5. Subsequently, £15 = 't' mismatches with '/i' and the pattern is
shifted by 2 because skip(t) = 2. Now the text character under consideration is
t17 = '/i', which matches with the rightmost character of the pattern. Hence
all the preceding characters are compared, and we find a complete match
of the pattern. Hence occurrence of the pattern beginning at text position
13 is reported. The pattern is now shifted right by skip(h) = 5 positions.



LINEAR-ORDER STRING MATCHING ALGORITHMS 165

Continuing in this manner, we find the second occurrence of the pattern at
location 35 as shown in Fig. 4.11.

It should be noted that the total number of character comparisons in this
example is 19, which is the same as the number of comparisons required by the
original Boyer-Moore algorithm shown in Fig. 4.9. Moreover, Boyer-Moore-
Horspool algorithm is not only simpler for implementation, it also requires
less preprocessing overhead and often provides better average computation
performance.

4.2.5 Karp-Rabin algorithm

In Karp-Rabin algorithm [4, 5], instead of directly comparing the pattern
characters with the text characters, the text is first pre-processed to map into
a sequence of integers. Here each character position in the text is mapped
into an integer, and this sequence of numbers is then compared with a fixed
integer representing the pattern. In general, if there are d symbols in the
alphabet E, then each symbol or character can be considered as a digit in the
radix-d notation for number representation. Hence we can map the pattern
P — "PiP2 • • • Pm" into a radix-d integer number Ip whose decimal equivalent
is

P = Pl * or-1 + P2 * <r-2 + • • • + pm_i * dl + Pm * d°. (4.3)
Similarly we generate a radix-d integer number /* for each character location
ti in text t = 'titrfz • • • tn\ whose decimal equivalent is

/ - i = ti * (T1-1 + ti+i * (T-2 + - • • + ti+m-2 *dl + *i+m_i * t°. (4.4)

Example 6: For the purpose of simple explanation, let us assume that the
alphabet consists of the decimal digits E = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. With
this decimal notation, we can assume that a string of m consecutive symbols
or characters is equivalent to an m-digits decimal number. The character
string '52837031' can be considered to be the decimal number 52,837,031.
We provide a simple pattern matching example, using Karp-Rabin algorithm,
in Fig. 4.12.

Here we consider a pattern p = "3 4 3" of length 3 and a text '1034343201'
of length 10 over an alphabet E = {0, 1, 2, 3, 4}. Hence each symbol in the
alphabet is a digit in the 5-radix number system notation. The decimal equiv-
alent of the integer map of the pattern p = "34 3" is the integer

IP = 3 * 52 4- 4 * 51 + 3 * 5° = 98.

The corresponding integer map, with 3-symbols length substring in first 8
character positions in the text, is /* = {28,19,98,119,98,117,85,51} as shown
in Fig. 4.12. We do not consider the integer map in the last two symbol posi-
tions because the pattern length is 3 and there will never be a match beginning
either at position 9 or 10. As shown by dotted arrows, the first integer 28 is
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£={0,1,2,3,4}

Pattern (p): 3 4 3

Position: 1 2 3 4 5 6 7 8 9 1 0

Text(t):

Integer
Map (/'):

1

, r
28

0

i
19

3
H —

(98)

4 ?

119

3
M

(98)

4

117

3

85

:' 2

, r

51

0

*

1;

DC

MATCH 1 MATCH!

Fig. 4.12 Example of Karp-Rabin string matching.

obtained by taking the decimal equivalent of the first three consecutive sym-
bols starting at position 1 (i.e., 1 * 52 4- 0 * 51 4- 3 * 5° = 28). Analogously,
the second integer 19 is obtained from the three consecutive symbols starting
at the second position, and continuing in a similar manner the last integer
51 in position 8 is obtained by decimal number representation with the three
consecutive symbols starting at position 8. Upon scanning the integer map
and comparing each decimal with the integer number 98 (representing the
pattern), we find two matches at positions 3 and 5, respectively. These, in-
deed, are the valid matches when compared with the original text string. We
can compute Ip in time O(m), because we can express it as

Ip = ((' •' (Pi * d + p2) * d + p3) * d 4- • • • + pm_i) * d + pr (4.5)

This can be recursively computed in m steps, with 1 multiplication and 1
addition in each step, as follows.

1. Initialize integer map and pattern index, Ip <— 0, i — 1;

2. Update integer map and increment pattern index, P <— P * d + pi,

3. if i < m (i.e., pattern not completed) then
go to step 2 to continue computation;
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4. Return integer Ip.

Here the first integer map I{ for the first text character (t\) can be com-
puted as

/* = ( (• . . (ix * d +12) * d + <3) * d + • • • + tm_i) * d + tm

in O(m) time. The remaining integer map, for the rest of the characters
*2, *3? • • • , *n-m+i in the text, can be computed in O(n — ra) time. This is
because 7t*+1 can be computed incrementally from the value of If using

I*+1 = (I? - (T-1 *ti)*d + ti+m. (4.6)

It is obvious that the multiplication factor dm~1 can be precomputed in O(ra)
in the worst case.

As an example, 7| = 98 represents the integer map of the substring '343'
beginning at position 5 in the text as shown in Fig. 4.12. To compute the
next integer map /g, we need to drop the high-order digit t$ = 3 from the
substring and add the low-order digit t8 = 2 as

/* = (I* - 52 * <5) * 5 + *8 = (98 - 25 * 3) * 5 + 2 = 117.

After the above preprocessing, /* is scanned from left to right and compared
with Ip to find all occurrences of pattern p in text t. Hence the Karp-Rabin
algorithm can be computed in O(m + n] time. However, there is a practical
problem with the above simplified approach for string matching, because of
the limited precision of digital computers for both processing and storage of
the numbers Ip and /*. If the alphabet d = |E| and m are large, each necessary
arithmetic computation for Ip and /* with limited precision digital computer
cannot be performed in constant time. This problem has been solved by
adopting a hash function to compute the integers to represent the signature
of a substring, in order to represent them within the permitted precision. The
hash function permits generation of a signature so that 7*+1 can be derived
easily from /*.

The hash function is carefully chosen by adopting the modulo-q operation,
selecting q in such a manner that d * q fits within the precision of a single
computer word, where d is the size of the alphabet E. Adjusting the recurrence
Eq. (4.6) to work with modulo-q, we get

fl+i = W-****) *d + Jj+m (mod q), (4.7)

where k = oP""1 (mod q). The distributive property of the mod function,
namely,

(x + y) (mod z) = (x (mod z) + y (mod z)) (mod z), (4.8)

allows only the remainders to be stored after each stage of computation and
helps to keep the results small enough to fit within the allowed precision of
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= {0,1,2, 3,4}, d = 5, q=13

Pattern(p)'.\j 4 3 Ip= (3*5244*51+3) mod 13 = 7

Position: 1 2 3 4 5 6 7 8 9 1 0

Text(t):

Integer
Map (/'):

1 CO
*n —

4 ,• 3
M

W

4 3

*

' 7, 0 T

(7"
11

VAUD
MATCH 1 MATCH!

F/g. 4.13 Example of Karp-Rabin string matching algorithm with modulo operation.

a computer word. In Fig. 4.13, we demonstrate an example of the above
modulo-based matching operation.

The problem with the above approach is that the modulo operation is a
many-to-one function, and hence not unique. As a result, it can generate spu-
rious matches in addition to desired valid matches in the string as shown in
Fig. 4.13. For a large value of q, however, the appearance of spurious matches
will be significantly smaller. Therefore when a potential match is detected,
the substring is directly compared with the original pattern to check the va-
lidity of the match. The algorithm is formally explained below.

KARP-RABIN-STRING-MATCHING ALGORITHM^, t)

1. Set pattern length, m <— \p\;

2. Initialize integer map for pattern, Ip <— 0;

3. Initialize integer map for text, I[ *— 0;

4. Set k <- cT1"1 (mod q);

5. for j <— 1 to ra do
IP ^- (IP * d + PJ) (mod g), I\ { * d + tj) (mod q);



STRING MATCHING IN BIOINFORMATICS 169

6. Initialize text pointer, i <— 1;

7. if /* ̂  Ip (i.e., mismatch in current text position) then
go to step 9 to continue at the next text position;

8. if titi+i • • • ti+m-i = pip2 • • -pm (i-e., match at text position i) then
print "Valid match at location" i;

9. if i < n — m (i.e., text not completely scanned) then
Zf+1 «— (I* — k * ti) * d + Ii+m (mod q) (i.e., compute hash function at
position i + 1);

10. Increment text pointer, i <— i + 1;

11. if z < n — m + 1 (i.e., text not complete) then
go to step 7 to continue;

12. Stop.

Karp and Rabin proposed an algorithm [5] in 1987 to reduce the proba-
bility of occurrence of spurious matches, by randomly selecting a prime q on
the occurrence of a spurious match, reinitializing the integer map after the
spurious match location, and thereafter continuing with the search.

4.3 STRING MATCHING IN BIOINFORMATICS

From information theoretic perspective, the DNA can be considered as a string
or sequence of symbols, where each symbol is one of the four bases adenine
[A], cytosine [C], guanine [G] and thymine [T]. Hence the alphabet in DNA
string search can be assumed to be E = {A,C,T, G}. Let us consider a DNA
fragment 'AGATACGATATATACGATATAGA, in which we would like to
search for a string 'AT AT A. Here we show the application of Knuth-Morris-
Pratt algorithm and Boyer-Moore-Horspool algorithm in matching the DNA
substring ' AT AT A in the DNA fragment
'AGATACGATATATACGATATAGA.

Example 7: We apply the Knuth-Morris-Pratt algorithm to match the
DNA substring 'AT'AT'A in the DNA fragment
1AGATACGATATATACGATATAGA\ The Next table for pattern "AT AT A"
is the same as the Next table for pattern "6a6a6" of Example 4 as derived
in Fig. 4.7. The matching process to find the occurrences of DNA string
' AT AT A in DNA fragment 'AGATACGATATATACGATATAGA is de-
picted in Fig. 4.14.

Example 8: Here we consider the Boyer-Moore-Horspool algorithm for
the same DNA search, to detect occurrences of the DNA string 'ATAT A1 in
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j : 1 2 3 4 5
Pattern: A T A T A

Next table: [0, 1, 0, 1, 3]

Match 2
h

I
Match 1 1

Text : A G A T A C G A T A T A T A C G A T A T A G A

I : 1 2 3 4 5 6 7 8 9 10 Il(l2)l3(l4) 15 16 17 18 19 20{2l)22 23V»-/ \-_X \—/

J : 1 2 1 2 3 4 1 1 2 3 4 5 4 5 4 1 1 2 3 4 5 4 1

t.—p. I T N y y y N N y y y y Y y Y N N y y y y Y

J=Nex4j): 1,0 1,0 0 3 3 1,0 0 3 3 1,0

Fig. 4.14 Example of searching the DNA string 'AT AT A1 in the DNA fragment
'AGATACGATATATACGATATAGA with Knuth-Morris-Pratt algorithm.

the DNA fragment 1AGATACGATATATACGATATAGA\ The matching
process is illustrated in Fig. 4.15. The character £5 = '-A' is compared with
the last character of the pattern p$ = 1A\ and they are found to be the
same. The comparison continues right to left until we detect a mismatch at
£2 = 'C' with p^ = 'T'. The pattern is shifted by 2 because skip(A) = 2.
Continuing this process, we find three occurrences of the pattern "AT AT A"
in the DNA fragment 1AGATACGATATATACGATATAGA' as shown in
Fig. 4.15. Total number of character comparisons required in this example is
23.

The principles and results of string matching have been used to solve many
problems in Bioinformatics. In the following section we describe the concepts
and principles behind approximate string matching algorithms and their so-
lutions. The concept of approximate string matching is also a very powerful
tool in DNA sequencing, alignment, homologue search, and many other similar
problems in Bioinformatics. We described these problems and their solutions
in greater detail in Chapter 10.
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Z={A,C, G, T>

pattern = "ATATA" , length. = 5

shp(A) =2
shp( C ) = 5
skip( G ) = 5
shp( T ) = 1

ATATA

ATATA
ATATA

ATATA
ATATA

ATATA

ATATA

AGATACGATATATACGATATAGA

I CJ-

i 1
•ig. 4.15 Example of Boyer-Moore-Horspool string matching using DNA.

4.4 APPROXIMATE STRING MATCHING

In the preceding sections we considered exact matching of patterns in text.
However, the string matching problem becomes challenging when the pattern
is not an exact one. This may be partially specified, as discussed in Sec-
tion 1.11. A generalization of the string matching problem is Approximate
String Matching.

The approximate string matching problem deals with finding the occur-
rences of substrings in a text t = t\t<i • • • tn which are similar to a given
pattern p = p\p^, • • -pm. By the word similar, we mean to allow for a lim-
ited number k > 0 of differences between the pattern and its occurrence in
the text. Before proceeding further, let us provide some basic definitions of
difference, also termed distance.
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4.4.1 Basic definitions

There are many definitions of "difference", such as Hamming distance, Lev-
enshtein distance, Edit distance, etc. There are other complex measures of
'difference', mainly in computational biology, but most of the popular and
useful algorithms have been developed based on the Levenshtein distance.

4.4.1.1 Hamming distance: This is always measured between two strings of
equal length. Hamming distance between two strings is equal to the number
of symbol positions at which they differ. For example Hamming distance
between strings D = 'SUNDAY' and D' = 'MONDAY' is 2 because they
differ in the first two character positions only.

4.4.1.2 Levenshtein distance: A string X = x\x-2 • • -xp can be transformed
to another string Y = y\y^ • • • yq by applying one or more of the following three
'edit operations' in each character of the string, namely, insertion, deletion,
and substitution. The Levenshtein distance d(X, Y) between the strings X
and Y is the minimum number of edit operations required to transform the
string X into Y, or vice versa. For example, the Levenshtein distance between
two strings D = 'SATURDAY' and D' = 'SUNDAY' is d(D, D'} = 3, because
we can delete characters 'A' and 'T' and substitute 'R' in 'SATURDAY' by
'N' to convert 'SATURDAY' to 'SUNDAY'.

4.4.1.3 Edit distance: If the string X = x\xi • • -xp can be transformed to
y = yi2/2 • • • yq by applying one or more insertion and deletion operations
only, then the edit distance between X and Y is the minimum number of
insertion and/or deletion operations required to transform the string X into
Y, or vice versa. For example, the edit distance between D = 'SATURDAY'
and D' = 'SUNDAY' is d(D, D') = 4 because we can delete characters 'A',
'T', and 'R' in 'SATURDAY' and then insert 'N' to convert 'SATURDAY'
to 'SUNDAY'. Although the substitution operation is not directly applied
to measure the edit distance, it can be accomplished by applying a deletion
operation followed by an insertion operation in a character position.

4.4.1.4 A>Approximate string matching problem: With the above def-
inition of difference or distance function(s), we can formally define the approx-
imate string matching problem as follows.

Given a pattern p = pip2 • • • pm of length m characters, text t = t\t<i • • • tn

of length n, where 0 < ra < n, a positive integer k, and a distance function d,
find all the substrings y of text t such that

d(p, y) < k. (4.9)

When the distance function d represents the Hamming distance, the prob-
lem is called an approximate string matching with k-mismatches. When d
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represents the edit distance, it is called an approximate string matching with
k- differences or k- errors.

4.4.2 Wagner-Fischer algorithm for computation of string distance

The popular Wagner-Fischer algorithm [6] for computation of distance be-
tween two strings is based on the dynamic-programming approach [7]. Ac-
cordingly, distances between the prefixes of the strings are successively com-
puted from the previous values until the final result.

Let us assume that we are interested in computing the distance between
two strings p = pip2 • • -pm and t = t\t-2 • • • tn. Also, let us assume that dij
represents the distance between the prefixes p(i) = P i p 2 - - - P i and t(j) =
t\^2 • • • tj of strings p and t, where i is the length of prefix p(i) and j is length
of prefix of t ( j ) , respectively. Hence

and dmtTl is the distance between the two strings p = p\p<2 • • • pm and t —
ti^2- • -tn. Let us assume that w(pi, tj) represents the cost of symbol substi-
tution from pi to tj \i pi ^ tj, w(pi, £) is the cost of deleting symbol pi, and
w(t, tj) is the cost of inserting symbol tj in a string. During computation of
the string distance, the values of d^j are recorded in a two-dimensional array
d[m + 1, n + 1]. The value of dij is computed using the recurrence formula

di!j=mm{di-l>j-1+w(pi,tj), di_i,j+tu(pi, e), di,j-i + w(t, tj)}. (4.10)

The boundary conditions for this recurrence relation are as follows.

do,o = 0,

i

di,o = ^fu>(pk, e) for 1 < z < m,
fc=i
i

do,j = ]T} w(e, tj) for 1 < j < n. (4.11)
fc=i

For Levenshtein distance, we assume unit values for each deletion, insertion,
and substitution operations. The corresponding cost values are expressed as

w[

Hence, for Levenshtein distance, the boundary computation are done as
follows.
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d^ o = i for 1 < i < m,

d o j = j for l<j<n. (4.13)

Using the array d, it is possible to determine a minimal-cost trace and
hence a least-cost editing sequence from string p to string t. The algorithm
can be expressed as follows.

LEAST-COST-TRACE-COMPUTATION(d[m +1, n + 1], p, t)

1. Initialize i <— m, for string p of length m;

2. Initialize j *— n, for string t of length n;

3. if (c^j = di-ij + w(pi, e)) then
compute i <— i — 1 and go to step 7 to continue;

4. if (dij = ditj_i + iu(e, t,-)) then
compute j <— j — 1 and go to step 7 to continue;

5. print (i, .7) for symbol substitution from pi to t,;

6. compute z <— 4 — 1, j <— j — 1;

7. if i > 0 and j > 0 (i.e., scanning not complete) then
go to step 3 to continue cost computation;

8. Stop.

4.4.2.1 Example 9: Let us consider two strings p = 'SUNDAY' and
t = 'SATURDAY'. The length of these two strings are 6 and 8, respectively.
Hence we compute the values in the array d[7, 9] based on the recurrence
formula for dij for i = 0 to 6 and j = 0 to 8. Entries in the two-dimensional
array d[7, 9] are shown in Fig. 4.16(a).

Here the value of dm,n = ^6,8 = 3. Hence the string distance (Leven-
shtein distance) between the strings 'SATURDAY' and 'SUNDAY' is 3. The
minimal-cost trace and hence the least-cost editing sequence can be generated
from the completed distance array. Accordingly, by applying LEAST-COST-
TRACE-COMPUTATION for d[7, 9], the following trace T is generated by listing
the output of the algorithm in reverse order.

T = {(1, 1), (2, 4), (4, 6), (5, 7), (6, 8)}.

The transformation of the string 'SUNDAY' to 'SATURDAY' is depicted in
Fig. 4.16(b). The characters in p (i.e., 'SUNDAY' in this example) untouched
by edges are substituted (i.e., 'N' is substituted by '#'), and this is indicated
by a broken arrow. The characters in t (i.e., 'SATURDAY' in this example)
untouched are inserted (i.e., 'A' and 'T').
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(a)

S U N D A Y

\\\\\
S A T U R D A Y

(b)

F/g. 4.16 Wagner-Fischer algorithm showing (a) matrix computation for distance
function and (b) transformation, of the string 'SUNDAY' to 'SATURDAY'.

4.4.2.2 Longest common subsequence problem: A longest common subse-
quence of two strings is a subsequence, common to both strings, having the
maximal length. Given two strings p and t, with \p\ = m and \t\ = n, where
0 < ra < n, the longest common subsequence problem is to find the longest
common subsequence lcs(p, t) of two strings p and t as well as its length
\lcs(p, i)\.

After computation of the complete distance array and finding the least-cost
trace T, it is fairly straightforward to find the Zcs(p, t). The constituents of
the lcs(p, t) are p», or equivalently tj, such that (i, j ) € T and pi = tj. So in
above example, the longest common subsequence for strings p = 'SUNDAY'
and t = 'SATURDAY' is

lcs(p, t) = P1P2P4P5P6 = = 'SUDAY'.

The longest common subsequence has been used in many application areas,
such as detection and correction of spelling error. It has also been used in
Bioinformatics for molecular sequence matching, both for exact match and
for common substrings up to fc-mismatches [8].
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Fig. 4.17 Example of text search with k-mismatches for k = 2.

4.4.3 Text search with fc-differences

The dynamic programming approach for computation of Levenshtein dis-
tance between two strings provides the foundation of text searching with
fc-differences or fc-errors. Here we search for occurrences of the pattern p
in text £, with a maximum difference of k characters between the pattern and
a text substring in text t. The only difference of this approach with Leven-
shtein distance computation is that we must allow for a substring occurrence
to begin at any text position. This is achieved by adjusting the boundary
condition in Eq. (4.13) to doj = 0 for all j = 0 to n, because the minimum
distance between the empty string e and any substring of t is 0. The computa-
tion of the recurrence relation to generate all other dij are identical to that of
the Levenshtein distance by Eq. (4.13). Upon completion of the computation
of all the entries in the array d[m+1, n+1], any value not exceeding k in the
last row m indicates a position in the text where a substring having at most
fc-differences with the pattern ends.

4.4.3.1 Example 10: Let us consider two strings, namely, a pattern
p = "ABCDE" and a text t = 'ACEDEFABCEE'. The complete distance
array corresponding to these two strings is shown in Fig. 4.17. For k = 2,
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we find from row 5 of the array that there are five occurrences of the pattern
"ABCDE" with up to 2-differences in the text, ending at text positions 3,
5, 9, 10, and 11. The corresponding matching text substrings are 1ACE\
'ACEDE\ 'ABC\ 1ABCE\ and 1ABCEE\ respectively.

4.5 COMPRESSED PATTERN MATCHING

One important operation that is fundamental to many database applications
is to be able to search a large database to find the occurrence of pattern(s).
In order to exploit the benefits of data compression, to conserve internal pro-
cessor storage and computation resources, it is naturally desirable to perform
pattern matching directly on compressed data without inherently decompress-
ing it. We call this the compressed pattern matching problem.

Extra overhead caused by data compression is a major bottleneck in its
use in many applications, where data need to be retrieved and manipulated
often based on the pattern search operation. One way to correct this prob-
lem is to develop string or pattern matching techniques to operate directly
on compressed data. Although effective data compression techniques have
been around for almost half a century, little work has been addressed in this
direction.

Let c(t) denote a compressed text string corresponding to a text t. The
compressed pattern matching problem is to find the occurrence(s) of a pattern
p in t by searching directly into the compressed text c(t).

The compressed pattern matching problem becomes even more challenging
when the pattern is not fully specified, because of appearance of don't care
character(s) in it. The problem of searching a compressed text using Huff-
man coding type tree-based coding or run-length encoding seems superficially
straightforward. The idea is to apply any well-known string search algorithm
[1, 3, 5, 9] on c(t) with respect to the compressed pattern c(p). A close exam-
ination of the algorithm reveals that such an approach is not very practical in
many applications. If we use Huffman encoding of Section 3.6.2, an implicit
decompression process has to be performed to determine the character bound-
ary (that is the starting bit of each encoded symbol). We have demonstrated
this with an example in Fig. 4.18.

Acharya [10] designed hardware algorithms to handle this problem, by gen-
erating a signal to indicate the boundary of a character in the compressed text
where the linear pattern matching takes place. If a potential match is found
in the compressed text, it is further checked to determine whether a character
boundary signal is detected as well. If a character boundary is detected in con-
junction with the occurrence of the compressed pattern, then the occurrence of
the pattern is considered to be a valid match as depicted in the block diagram
of Fig. 4.18. Acharya [10] also proposed how to handle the compressed pat-
ter matching problem, in these hardware algorithms, even when the patterns
are partially specified with either fixed-length don't care characters (FLDC)



178 STRING MATCHING

Character

a
b
c
d

Huffman
Code

0
10
110
111

Text(/): a b b a c d a b c a

Pattern (/?): ab

Compressed Pattern c(/?) : 01 o

False Match

Compressed Text c(/): OlOlOOilOlllOlOllOO

True Match

c(p)
Pattern Matching

Character Boundary
Detection

m

Tn

AND True Match

Fig. 4.18 Example of compressed pattern matching using Huffman code.

or variable-length don't care characters (VLDC). The same working principle
can be applied to any tree-based code such as Shannon-Fano code [11], Elias
Code [12], etc.

The compressed pattern matching problem with Lempel-Ziv codes (of Sec-
tion 3.12) is very difficult, due to the fact that for Lempel-Ziv codes a sub-
string may have multiple encoding in the compressed file [10]. Some attention
has recently been paid to the search of patterns in text compressed with
variations of Lempel-Ziv coding. The first algorithm for pattern search in
LZ78 coded files was proposed in [13]. A randomized algorithm to determine
whether a pattern is present in an LZ77 compressed text was presented in
Ref. [14]. However, these algorithms are very complex. There is tremendous
need for further research and development in this area of compressed pattern
matching, for practical applications and their usage in data mining in the
near future. Acharya proposed a general formulation for compressed pattern
matching in Lempel-Ziv codes in two steps. The first step is to preprocess the
given pattern to be searched using the "CodebooW generated during Lempel-
Ziv compression of the text. The compressed matching is done in the second
step, using a graph generated in the pattern preprocessing step [10].

Although the computational complexity of these methods are polynomial
in nature, still it is very high for any practical implementation. Hence de-
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velopment of computationally efficient algorithms for pattern matching in
compressed domain remains a challenge. Development of these algorithms
especially suitable for data mining applications will be even more interesting
to explore and offer promises for performance of future data mining systems.

4.6 CONCLUSIONS AND DISCUSSION

In this chapter, we presented fundamentals of string matching algorithms and
their applications in different domains. We have presented several classical
and pioneering algorithms in this area of study. We have also introduced the
concept of the compressed pattern matching problem, in order to explore how
pattern matching can be employed directly in compressed databases without
involving explicit decompression. In addition to the description of the algo-
rithms, we have presented a number of examples in each case to demonstrate
clearly how they work.

The area of compressed pattern matching being still nascent, we wanted to
motivate readers to pay attention in this direction in order to make significant
progress in text mining and data mining applications in general. The results
of string matching have paved the way for many text processing applications,
including search, edit, and indexing of text databases. The search engines
for the World Wide Web have been designed based on the results from string
matching research. Text based search and retrieval systems are being used in
text mining and Web mining applications as well. These issues are covered in
further detail in Chapter 9.

The principles of string matching have been widely used in Bioinformat-
ics for DNA sequence search, sequencing, alignment, etc. The concepts be-
hind approximate string matching have been particularly useful for homology
search and related problems in large genome databases. All these are de-
scribed in greater detail in Section 10.3.4 of Chapter 10.
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5
Classification in Data

Mining

5.1 INTRODUCTION

As the quantity and variety of data available increases, there arises a com-
mensurate need for robust, efficient, and versatile data exploration techniques
that can be supervised or unsupervised. Classification, as explained in Sec-
tion 1.8, is a method of categorizing or assigning class labels to a pattern
set under the supervision of a teacher. Decision boundaries are generated to
discriminate between patterns belonging to different classes. The patterns are
initially partitioned into training and test sets, and the classifier is trained on
the former. The test set is used to evaluate the generalization capability of the
classifier. Examples of classification from diverse domains include (i) medical
patients based on the disease, (ii) a set of images containing a red rose, from
an image database, (iii) a set of documents describing "data mining", from a
document database, (iv) equipment malfunction based on cause, and (v) loan
applicants based on their likelihood of payment. For example, in the latter
case the problem is to predict a new applicant's loan eligibility given old data
about the customers (like age, salary, profession, location) and their payment
patterns.

A decision tree classifier is one of the most widely used supervised learn-
ing methods used for data exploration. It is easy to interpret and can be
re-represented as If-then-else rules. It approximates a function by piecewise
constant regions and does not require any prior knowledge of the data distri-
bution. This classifier works well on noisy data. A decision tree aids in data
exploration in the following manner [1].

181
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• It reduces a volume of data by transformation into a more compact
form, that preserves the essential characteristics and provides an accu-
rate summary.

• It discovers whether the data contains well-separated classes of objects,
such that the classes can be interpreted meaningfully in the context of
a substantive theory.

• It maps data in the form of a tree so that prediction values can be
generated by backtracking from the leaves to its root. This may be used
to predict the outcome for a new data or query.

The concept of decision trees was popularized by Quinlan with ID3 [2],
which stands for Interactive Dichotomizer 3. Systems based on this approach
use an information theoretic measure, like entropy, for assessing the discrimi-
natory power of each attribute. The most important feature of decision trees
is their capability to break down a complex decision-making process into a col-
lection of simpler decisions, thereby providing an easily interpretable solution
[3]. IDS is a popular and efficient method of making decisions for classification
of symbolic data and is generally not suitable in cases where numerical values
are to be operated upon. Since most real-life problems deal with nonsym-
bolic (numeric, continuous) data, they must be discretized prior to attribute
selection. Classification and Regression Trees (CART) [4] and C4.5/C5.0 [5],
however, do not require such prior discretization. Here the thresholds are
dynamically computed depending on the conditions along a path, and they
often result in the multiple use of a particular attribute with different thresh-
olds. This can, however, lead to an increased accuracy at the cost of reduced
comprehensibility.

The major decision tree algorithms are grouped as (i) classifiers from the
machine learning community: IDS, C4.5, CART; and (ii) classifiers for large
databases [6]: SLIQ, SPRINT, SONAR, RainForest. Generally, a pruning
phase is followed by a building phase. During the building phase the algorithm
recursively splits nodes, using the best splitting attribute for that node. It is
found that smaller, imperfect decision trees generally achieve better accuracy.
Hence leaf nodes are recursively pruned to prevent over-fitting.

As discussed in Section 2.2.3, the advantages of artificial neural networks
(ANNs) for classification include the learning of complicated, or highly non-
linear, class boundaries, fast application, and handling of a large number of
features. Like decision trees, they are also nonparametric. The major disad-
vantages of ANNs encompass a slow training time, harder interpretation, and
a difficult implementation in terms of the optimal number of nodes. Some of
the popular ANN models, used for classification, include multilayer perceptron
and radial basis function networks [7].

Both decision trees and ANNs are the most commonly used tools for pattern
classification. Note that the decision tree approach is monothetic. It consid-
ers the utility of individual attributes one at a time and may miss the case
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when multiple attributes are weakly predictive separately but become strongly
predictive in combination. However, neural approaches are polythetic. Here
multiple attributes can be considered simultaneously.

Probabilistic learning [8] is used to calculate explicit probabilities for the
hypotheses and is among the most practical approaches to certain types of
learning problems. When this is incremental, each training example can be
used to incrementally increase or decrease the probability that a hypothesis is
correct. Prior knowledge can also be combined with the observed data. One
can use probabilistic prediction to infer multiple hypotheses, weighted by their
probabilities. Even when Bayesian methods are computationally intractable,
they can provide a standard of optimal decision making against which other
methods can be measured.

Instance-based learners work on the basis of minimum distance from in-
stances or prototypes [8]. Some typical models include the fc-nearest neighbor
classifier, radial basis function networks, and case-based reasoning. Nearest-
neighbor classifiers typically define the proximity between instances, find the
neighbors of a new instance, and then assign to it the label for the majority
class of its neighbors. Case-based reasoning [9] is generally used when the
attributes are more complicated than simple real-valued.

Support vector machines (SVMs) are a general class of learning architec-
tures, inspired by the statistical learning theory, that performs structural risk
minimization on a nested set structure of separating hyperplanes [10]. Given
a training data, the SVM learning algorithm generates the optimal separating
hyperplane in terms of generalization error. SVMs have been found to be very
useful in handling data mining problems.

Section 5.2 of this chapter deals with different decision tree classifier mod-
els. Issues related to overfitting, pruning, and rule extraction are discussed
in this context. Fusion of decision trees and ANNs is also presented. This is
followed by Bayesian classifiers, instance-based learners, and support vector
machines in Sections 5.3-5.5, respectively.

A problem with IDS is that it cannot provide any information about the
intersection region where the pattern classes are overlapping. This can be
handled using fuzzy decision trees. Section 5.6 describes a method of design-
ing fuzzy ID3 and extracting linguistic rules from this for encoding a fuzzy
MLP [11, 12]. This generates a fuzzy knowledge-based network. Note that
knowledge-based networks provide for initial embedding of prior knowledge
about the domain. This is a desirable feature for data mining. Use of fuzzy
sets enables uncertainty handling in this framework. Fuzzy decision trees pro-
vide a way of encoding a fuzzy knowledge-based network. Details on method-
ologies involving other soft computing tools are provided in Section 8.2.3.

The fuzzy ID3 formulates a scheme for automatic linguistic discretization
of continuous attributes, based on quantiles. A novel concept of measuring
the goodness of a decision tree, in terms of its compactness (size) and efficient
performance, is provided. Linguistic rules are evaluated using quantitative
indices. The knowledge encoding of the network incorporates the frequency
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> 30

Fig. 5.1 A decision tree.

of samples and depth of the attributes in the fuzzy decision tree. Puzziness
measures, in terms of class memberships, are used at the node level of the
tree to take care of overlapping classes. The effectiveness of the network, in
terms of recognition scores, structure of decision tree, performance of rules,
and network size, is demonstrated on real life data. The chapter is concluded
in Section 5.7.

5.2 DECISION TREE CLASSIFIERS

A decision tree classifier splits a dataset on the basis of discrete decisions,
using certain thresholds on the attribute values. Figure 5.1 depicts a typical
decision tree demonstrating the risk factor associated with rash driving. There
is a root node on top of the tree structure, indicating the feature (or attribute)
that is split first for highest discrimination. The internal nodes of the tree
represent simple decision rules on one or more attributes, while the leaf nodes
are the predicted class labels. Tree traversal along the left branch in the figure
indicates that persons with age < 20 involve the high risk category, while the
right branch depicts that people with age > 30 are associated with low risk
irrespective of the car type. The third (middle) branch, on the other hand, is
traversed for 30 > age > 20 and leads to a second split on attribute car type
before arriving at a final decision.

An object X is, therefore, classified by passing it through the tree starting
at the root node. The test at each internal node along the path is applied
to the attributes of X, to determine the next branch along which X should
go down. The label at the leaf node at which X ends up is output as its
classification. An object is misclassified by a tree if the classification output
by the tree is not the same as the object's correct class label. The proportion of
objects correctly classified by a decision tree is known as its accuracy, whereas
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the proportion of misclassified objects is the error. There exist several well-
known tree learning algorithms in literature [1,6]. Some of these are IDS [2],
its successor C4.5 [5], CART [4], SLIQ [13], SPRINT [14], SONAR [15], and
RainForest [16].

Greedy top-down construction is the most commonly used method for tree
growing. A hierarchical model is constructed top-down, starting from the
entire data, partitioning it into subsets, and recursing the partitioning proce-
dure using a splitting rule. When more than one tree can describe a dataset
perfectly, one needs metrics to quantify the goodness of trees.

The process of tree building starts with an empty tree and the entire train-
ing set, and it broadly proceeds as follows until no more splits are possible.

1. If all the training examples at the current node t belong to category Ci,
create a leaf node with the class (category) Ci .

2. Otherwise, score each one of the set of possible splits 5, using a goodness
measure.

3. Choose the best split S* as the test at the current node.

4. Create as many child nodes as there are distinct outcomes of S1*, and
partition the training data using S* into the child nodes.

5. A child node t is said to be pure if all the training samples at t belong
to the same class. Repeat the previous steps on all impure child nodes.

Tree construction can proceed by maximizing global mutual information of
the whole tree, or by locally optimizing information gain. Sometimes distance
measures like the Gini index of diversity [Eq. (5.2)] is also used. Both locally
optimizing information gain as well as distance-based splitting criteria are
found to produce small, shallow and accurate trees. In order to split at a
node, the algorithm proceeds as follows:

• Intuitively pick an attribute that best separates instances of the different
classes.

• Quantify the intuitive factor for measuring the separability: Define an
impurity 7(5) of an arbitrary set 5 consisting of I classes. It can be

— Information entropy, measured as

i
Entropy(S) = - P i Iogpi5 (5.1)

t=i

where p^ is the relative frequency of class i in S (a priori probabil-
ity). This has a value of zero when all the patterns belong to only
one class, and it has a value of one when all the classes are in equal
number.
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— Gini index, expressed as

i
(5.2)

t=i

Compute the information gain on partitioning S into r subsets. This
is measured as the impurity of S less the sum of weighted impurity of
each subset. For example,

, Si, . . . , 5r) =

where |5| is the cardinality of 5, and I(S) is the intuitive factor defined
as either Entropy(S) or Gini(S) using eqns. (5.1)-(5.2).

• The attribute that provides the largest information gain is chosen to
split the node. However, one needs to enumerate all possible splitting
points for each attribute.

It has been observed [1] that the Gini index has difficulty when there are
a relatively large number of classes. This index emphasizes equal-sized off-
springs with purity of all children. Information gain, on the other hand,
is biased towards attributes with a large number of possible values. They
typically produce trees that are extremely deep and difficult to interpret.
However, nothing definite can be said about the consistent superiority of one
measure over the other. Measures like information gain and Gini index are
all concave (never reporting a worse goodness value after trying a split than
before splitting), so that there is no natural way of assessing where to stop
further expansion of a node. Techniques like minimum description length
(Section 5.2.5) are often used to decide which splits to prefer over others, and
also for pruning.

A regression tree is a decision tree with continuous class labels. It approxi-
mates a function with piece-wise constant regions. When computing the split
criteria for regression trees, one determines the predicted value for a set S
as the average of all values in S. The error is the square root of the sum of
square of difference of each member of S from the predicted average. The ob-
jective is to pick the smallest average error. The splits are made on categorical
attributes.

One of the main difficulties of inducing a recursive partitioning structure is
knowing when to stop, with a right-sized tree. For moderate-sized problems,
the critical issues are generalization accuracy. For very large tree classifiers,
on the other hand, the critical issue is optimizing structural properties like
height and balance of the tree. The tree quality typically depends more on
good stopping rules than on splitting rules [1]. Pruning is a method widely
used for obtaining right-sized trees. It proceeds by building a complete tree
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(in which splitting no leaf node further will improve the accuracy on the train-
ing data) and then removing subtrees that are not contributing significantly
towards generalization accuracy. This method is better than stop-splitting
rules by partly compensating for the suboptimality of greedy tree induction.
For example, consider a very good node T% a few levels below a not-so-good
node TI . Here a stop-splitting rule will stop tree growth at TI , whereas prun-
ing may give a high rating for, and retain, the whole subtree at T\ . Typically,
pruning is found to be more beneficial for accuracy with increasing skewness
in class distribution and/or increasing sample size.

The advantages of decision trees include reasonable training time, fast ap-
plication, easy interpretation, easy implementation, and ability to handle
large number of features. Since they do not make any assumptions about
the underlying data distribution, they are specially suited for exploratory
knowledge discovery. Their major demerits include an inability to handle
complicated relationships between features, generation of simple axis-parallel
decision boundaries, and their problems with lots of missing data. Sample
size versus dimensionality of a dataset greatly influences the quality of trees
constructed from it. The shortcomings of decision tree models, as well as
solutions to alleviate them, have been extensively reported in literature [1] .

In the remaining part of this section we describe some decision tree classifier
models and discuss issues related to their overfitting, rule extraction, and
fusion with neural networks.

5.2.1 IDS

ID3 uses an information theoretic approach. The procedure is that at any
point one examines the feature that provides the greatest gain in information
or, equivalently, the greatest decrease in entropy. Entropy is measured by
Eq. (5.1).

The general case is that of N labeled patterns partitioned into sets belong-
ing to classes Ci, i = 1,2, 3, . . . , / . The population in class d is n». Each
pattern has n input features and each feature can take on two or more values.

5.2.1.1 Algorithm The IDS prescription for synthesizing an efficient decision
tree can be stated as follows:

1. Calculate the initial value of entropy

Entropy = -(nt/N) log2(rii/N) = -p> Iog2 pit (5.4)
i=l t=l

where N is the total number of labeled patterns.

2. Select that feature which results in the maximum decrease in entropy
or gain in information, according to Eq. (5.3), to serve as the root node
of the decision tree.
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3. Build the next level of the decision tree providing the greatest decrease
in entropy.

4. repeat steps 1 through 3. Continue the procedure until all subpopula-
tions are of a single class and the system entropy is zero.

At this stage, one obtains a set of leaf nodes (subpopulation) of the decision
tree, where the patterns are of a single class. Note that there can be some
nodes which cannot be resolved any further.

Table 5.1 Sample dataset for IDS, along with a split on height

Height
tall
tall
tall
short
short
tall
tall
short

Hair
blond
dark
dark
dark
blond
red
blond
blond

Eyes
brown
blue
brown
blue
brown
blue
blue
blue

Class
Ci
Ci
Ci
Ci
Ci
C-,
C-2

C2

Height

tall

short

Hair
blond
dark
dark
red
blond
dark
blond
blond

Eyes
brown
blue
brown
blue
blue
blue
brown
blue

Class
Cx
Ci
Ci
Ci
C-,
Ci
Ci
C2

5.2.1.2 Example 1: Let us illustrate the tree formation with a simple exam-
ple. Table 5.1 provides a sample dataset of eight patterns, containing three
attributes (height, hair color, eye color) and two output classes (Ci, Cz). The
initial value of entropy is computed by Eq. (5.4) as

5 5 3 3
-g Iog2 g - g Iog2 g = 0.954 bits.

Splitting on the basis of attribute height leads to five samples along the tall
branch and three along the short branch, as depicted in columns 5 to 8 of the
table, having corresponding entropies of

and

respectively. The information gain with height is evaluated, using Eq. (5.3),
as

15 3 1
- * (0.971) + - * (0.918) = 0.954 - 0.951 = 0.003 bits.
8 8 J

2, 2 3
— - logo - — - lo

5 5 5

-ilog2i-5k>!

3
g2 - = 0.971 bits

o

2
T2 _ = 0.918 bits,

o
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Similarly, the corresponding gains based on attributes hair and eyes are 0.454
and 0.347 bits, respectively. Maximizing, we find that the split with hair gives
the largest information gain. Hence attribute hair is chosen as the root node.
This procedure is continued in subsequent levels of the resultant tree for the
remaining attributes. It is found at the second level that a split on attribute
eyes yields a larger information gain and all nodes are resolved (or pure). This
completes the tree building procedure.

5.2.2 IBM IntelligentMiner

Here the decision tree uses the Gini index. If a dataset S contains examples
from / classes, gini(S) is defined by Eq. (5.2). If a dataset S is split into two
subsets Si and 82, then the Gini index Gini(S) is defined as

Ginisplit(S) = (5.5)

The attribute that provides the smallest Ginisput(S) is chosen to split the
node.

5.2.3 Serial PaRallelizable INduction of decision Trees (SPRINT)

SPRINT [14] is a decision-tree classifier for data mining. It is able to handle
large disk-resident training sets, with no restrictions on training-set size, and
is easily parallelizable. One list is maintained for each attribute in the dataset.
The entries in an attribute list consist of the attribute value, class value, and
record ID (RID). The algorithm uses a hash tree proportional to the training
set size to store the RIDs.

5.2.3.1 Example 2: Let a sample dataset as in Table 5.2 provide risk factors
(high, low) for the numeric attribute Age and the categorical attribute car
type.

Table 5.2 A sample attribute list for SPRINT

age
23
17
43
68
32
20

car type
family
sports
sports
family
truck
family

risk
high
high
high
low
low

high

RID
0
1
2
3
4
5
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Lists for continuous (numeric) attributes are in sorted order and may be
disk-resident. Each leaf-node has its own set of attribute lists representing the
training examples belonging to that leaf. The Gini index of Eq. (5.2) is used
to evaluate the split points, using only the class frequencies in the process.
For each attribute the algorithm evaluates splits using the attribute list, and
keeps that split with the lowest Gini index.

Let us refer to the data of Table 5.2. The initial attribute lists for the root
node are given in Tables 5.3 and 5.4 corresponding to attributes age and car
type, respectively.

Table 5.3 Initial numeric attribute list for root node

age
17
20
23
32
43
68

risk
high
high
high
low
high
low

RID
1
5
0
4
2
3

Table 5.4 Initial categorical attribute list for root node

car type
family
sports
sports
family
truck
family

risk
high
high
high
low
low
high

RID
0
1
2
3
4
5

The split is evaluated for every value in each attribute list, for determining
the optimal choice at a given tree-node. While performing the splits, the
attribute lists of every node must be divided among the two children. The
building phase proceeds by initializing the root node of the tree, while a node a
that can be split exists. For each attribute Aj, all possible splits are evaluated
on AJ. Then the best split is used to split node a.

In case of continuous attribute AJ, splits of the form value(Aj) < v are
considered. From Table 5.3, we find the class frequencies for the root node
to be 4, 2 for risk high, low, respectively. The split age < 20 generates class
histograms with frequencies of 1, 0 for risk high, low, respectively, in case
of left child [RID = 1], and histogram frequencies 3, 2 for risk high, low,
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respectively, in case of right child [RID = 5, 0, 4, 2, 3]. This results in a Gini
value of 0.4. It is found that the lowest Gini value of 0.222 is obtained for the
split age < 32. This is depicted in Table 5.5 with RID = 1, 5, 0 along the left
branch (high risk) and RID = 4, 2, 3 along the right (low risk).

Since every record is vertically partitioned over all attribute lists, here each
attribute list needs to be distributed across the children separately through
a hash-join with that of the splitting attribute. The record identifier, which
is duplicated into each attribute list, establishes the connection between the
vertical parts of the record. Since during the hash-join each attribute list is
read and distributed sequentially, the initial sort order of the attribute list
is preserved. In the example under consideration the hash table maintains
the mapping of RIDs 0, 1, 5 to the left child for the split age < 32. The
corresponding attribute list for car type is given in Table 5.6.

On the other hand, in case of categorical attributes the algorithm con-
siders splits of the form value(Aj) e {vi,...,vn}. Here we have car type
G {family, sports, truck}. Considering Table 5.4, the class frequencies for
risk high, low, corresponding to the root node, are found to be 2,1 [RID = 0,
5, 3]; 2,0 [RID = 1, 2]; and 0,1 [RID = 4] for car type v* in family, sports,
truck, respectively. A split on car type in sports results in class frequencies of
2, 0 [RID = 1, 2] for risk high, low, respectively, in case of left child, and 2,
2 [RID = 0, 3, 4, 5] for risk high, low, respectively, in case of right child (not
in sports). This yields a Gini value of 0.333. The lowest Gini value of 0.267
is obtained for the split on car type in truck.

Table 5.5 Numeric attribute list for split on age < 32

Left child
age
17
20
23

risk
high
high
high

RID
1
5
0

Right child
age
32
43
68

risk
low
high
low

RID
4
2
3

Table 5.6 Attribute list for car type with split on age < 32

Left child
car type
family
sports
family

risk
high
high
high

RID
0
1
5

Right child
car type
sports
family
truck

risk
high
low
low

RID
2
3
4
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5.2.3.2 Algorithm The algorithm is summarized as follows:

• Each node of the decision tree classifier requires us to efficiently examine
all possible splits on each value of each attribute.

• After choosing a split attribute, it needs to partition all data into its
subset.

• While evaluating splits on numeric attributes, it sorts on attribute value
and incrementally computes the Gini index.

• While splitting on categorical attributes, it finds the Gini index for each
subset and chooses the best; for large datasets, a greedy method is used.

Some of the drawbacks of SPRINT include [16] (i) an increase in the size of
the training database while maintaining the attribute list at each node, (ii) a
large cost to keep these attribute lists sorted, and (iii) involvement of a costly
hash-join between vertically separated parts of a record through the record
identifier.

5.2.4 RainForest

Studies have shown that no algorithm is uniformly most accurate over all
datasets. Hence a unifying generic framework RainForest [16] has been devel-
oped for classification tree construction. It yields scalable versions of a wide
range of classification algorithms and offers performance improvements above
a factor of three over SPRINT, the fastest available scalable classification al-
gorithm. Unlike SPRINT, RainForest requires a certain minimum amount of
main memory proportional to the set of distinct values in a column of the
input relation. However, given the current main memory costs, this require-
ment is readily met in most, if not all, workloads. This generic algorithm can
be specialized to obtain scalable versions of most classification and regression
tree construction algorithms available in the literature.

5.2.5 Overfilling

A tree T overfits if there is another tree T' that gives a higher error on the
training data while giving a lower error on unseen test data. Such an overfitted
tree does not generalize to unseen instances. This situation generally occurs
when the data contains noise or irrelevant attributes, and the training set size
is small. Overfitting can reduce the accuracy drastically, even around 10-25%
as reported in [17]. Smaller consistent decision trees typically have higher
generalization accuracy than larger consistent trees.

Let us explain the concept of overfitting (poor generalization) in the context
of a two-class problem. A classifier with excellent performance over a training
dataset may have poor generalization over an unseen test set, since its decision
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Generalization

Overfitting

O X,

Fig. 5.2 Overfitting and generalization for decision boundaries in classification.

boundary overfits the training data as depicted in Fig. 5.2. On the other
hand, a decision boundary with good generalization provides consistently good
performance over both the training and test sets. This is also illustrated in
the figure.

There are two popular approaches to prevent Overfitting.

• Stop growing the tree beyond a certain point (pre-prune). For this
purpose, one can use the statistical significance x2 or information gain,
to assess the goodness of a split.

• First overfit and then post-prune. Here the tree building is divided into
two phases, namely, growing and pruning.

Since it is hard to decide when to stop growing the tree, the second approach
is more widely used. Although post-pruning requires more computations, it
eventually generates a more reliable tree.

There exist three broad criteria for finding the correct final tree size. These
are (i) cross-validation with separate test data, (ii) use of some criteria func-
tion, like Minimum Description Length (MDL), to choose the best size, and
(iii) computation of statistical bounds, using all data for training but applying
statistical tests to choose the right size.

Cross-validation consists of partitioning the dataset into two disjoint parts.
The training set is used for building the tree, while a validation set is used
for pruning the tree. The rule of the thumb is to keep two-thirds for training
and to keep the remaining one-third for validation. The tree is evaluated on
the validation set, keeping count of the correctly labeled data at each leaf as
well as internal nodes. Starting bottom-up, the algorithm prunes nodes with
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error less than its children. However, if the training dataset size is limited,
fc-fold cross-validation [18] is used.

Pruning using the MDL principle views a decision tree as a means for
efficiently encoding the classes of records in the training set. The best tree
is considered as the one that can encode records using the fewest number of
bits. The cost of encoding a tree includes one bit for encoding the type of
each node (e.g., leaf or internal), the cost Cgput for encoding the attribute
and value for each split, and the cost N' x E of encoding the N' records in
each leaf (E being entropy). The problem is to compute the minimum cost
subtree at the root of a built tree. Pruning proceeds in a bottom-up fashion.
The basic steps are as follows:

• Suppose minCa is the cost of encoding the minimum cost subtree rooted
at a.

• Compute min^a as N'E + I if a is a leaf, and mm{N'E + 1, Cspnt +
1 +min Cai +min Ca2} if a has children c*i and a2.

• Prune the children of a node a if minCa = N'E + 1.

5.2.6 PrUning and Building Integrated in Classification (PUBLIC)

This is an improved decision tree classifier [19] that integrates the pruning
phase with the initial building phase. In PUBLIC, a node is not expanded in
the building phase if it is determined that it will be pruned in the subsequent
pruning phase. Before a node is expanded, the algorithm computes a lower
bound on the minimum cost subtree rooted at the node. This estimate, based
on the records contained in the leaf, is then used by PUBLIC to identify the
nodes that are certain to be pruned later, such that no effort is initially ex-
pended on splitting them. Since building a subtree usually requires repeated
scans over the data, a significant reduction in I/O and improvement in perfor-
mance is realized by minimizing this wastage of effort. However, there exists
a trade-off between the accuracy of the estimate and the actual cost involved.

5.2.7 Extracting classification rules from trees

The knowledge encoded by the decision tree can be extracted in the form
of IF-THEN rules. One rule is created for each path from the root to a leaf,
with each attribute-value pair along a path forming a conjunction. The leaf
node holds the class prediction. Rules being easier for humans to understand,
their usefulness in improving understandability and subsequent role in better
human-machine interaction cannot be ignored. For example, sample rules can
be of the form
IF age < 30 AND student = yes THEN buys-computer = yes;
IF 31 < age < 40 THEN buys .computer = yes;
IF age < 30 AND credit-rating — fair THEN buys.computer = no.
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An example of a rule extracted from the decision tree of Fig. 5.1 is
IF 30 > age > 20 AND car type = sports THEN driving risk = high.

Tree-based pruning limits the kind of pruning involved. When a node is
pruned, all subtrees under it have to be pruned as well. One can also use
rule-based pruning. Here, for each leaf of the tree, a rule is extracted using
a conjunction of all tests upto the root. Then, based on the validation set,
one independently prunes tests from each rule in order to generate the highest
accuracy for that rule. The rules are maintained sorted, in decreasing order
of their accuracy.

5.2.8 Fusion with neural networks

Decision trees and neural networks are the most commonly used non-parametric
tools for pattern classification [20]. While in decision trees the number of tu-
ples becomes smaller as the path between the root node and a new node
increases, the decision boundaries of the neural net are formed by considering
all the available input tuples as a whole. Hence a neural net can be expected
to generate fewer rules, but with larger number of antecedent conditions [21].
In recent years, enormous work has been done in an attempt to combine the
advantages of neural networks and decision trees [22]-[24].

Sethi [22] proposed a procedure for mapping a decision tree into a multilay-
ered feed-forward neural network with two hidden layers. The mapping rules
are as follows, (a) The number of neurons in the first hidden layer equals to
the number of internal nodes in the tree. Each of these neurons implements
one of the decision functions of the internal nodes, (b) The number of neurons
in the second hidden layer equals the number of leaf nodes in the tree, (c)
The number of neurons in the output layer equals to the number of distinct
classes. Ivanova and Kubat [23] have directly mapped a decision tree into a
three-layered network, such that each conjunction (in a rule) is modeled by a
hidden node. The input domain is partitioned into a set of non-overlapping
intervals of attributes, which are then mapped to input nodes of the network.
Setiono and Liu [24] computed binary training patterns from the decision
rules and attribute intervals. These are used to train a feed-forward network,
which is then pruned to generate an optimal topology.

Determination of the optimal size of an artificial neural network (ANN)
is a problem of considerable importance, as this has a significant impact on
the effectiveness of its performance. In general, it is desirable to have small
networks. This is because increasing the number of hidden nodes or links may
improve the approximation quality of an ANN at the expense of deteriorating
its generalization capability (due to the resulting redundancy). One way of
improving the generalization behavior of an ANN is to use knowledge-based
networks [25, 26]. Decision trees provide a way of extracting crude domain
knowledge from a large dataset, which can be directly encoded into an ANN
to formulate a knowledge-based network. Further details on knowledge-based
networks are provided in Section 8.2.3.
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5.3 BAYESIAN CLASSIFIERS

Statistical methods constitute one of the oldest learning paradigms in the
literature [27], and work under the assumption that the underlying pattern
generating mechanism is faithfully represented by a statistical model. Given
that there are I possible hypotheses (pattern classes) /ii,/i2, .. .,/ij, and an
arbitrary pattern belongs to hypothesis hi with o priori probability pi > 0,
we have $^i=1 Pi = 1. A decision rule assigns an unknown pattern X to a class
h, such that the average loss incurred in the process is as small as possible.

5.3.1 Bayesian rule for minimum risk

Bayes' theorem provides a way of computing the probability of a particular
event X, given some set of observations. For training pattern or sample X,
the posteriori probability of a class or hypothesis /i, P(/i|X), is expressed as

(5.6),
where P(ti) = *$• is the estimated a priori probability of h (given \h\ and
N are the number of patterns in class h and the total number of patterns,
respectively, and assuming that all hypotheses are equally likely), P(X/h)
is the posterior probability of X conditioned on h, and P(X) is the prior
probability of X (and is constant).

The maximum posteriori (MAP) hypothesis is used to assign to the class
h having maximum P(h/X). It is expressed as

= argmdxP(h\X) = argmaxP(X\h)P(h),

where H is the set of hypotheses.
Given the probability distribution of the data, Bayesian classifiers are able

to perform efficiently with the minimum error rate [8]. Here the expected loss
(or conditional risk) of making a decision is the minimum. This statistically
optimal classification rule is a generally accepted standard against which the
performance of other classification algorithms is often compared. However,
the practical difficulties involved include the requirement of initial knowledge
about many probabilities and a significant computational cost.

5.3.2 Naive Bayesian classifier

The naive Bayesian classifier represents each pattern X as an n-dimensional
vector of attribute values [ai,a2, ...,an]. Given that there are / classes
Ci) C*2, . . . , Ci, the classifier predicts an unknown sample X as belonging to
the class having the highest posterior probability conditioned on X. In other
words, X is assigned to class Ci if and only if

P(Ci\X)>P(Ci\X) (5-7)



BAYESIAN CLASSIFIERS 197

for 1 < j < I and j ^ i. Using Eq. (5.6), we get

In order to reduce the computational expenses involved, the classifier makes
the naive or simplified assumption that the n attributes are conditionally
independent of one another. The class-conditional independence is expressed
as

As P(X) is constant for all classes, and P(Ci) = ^^, one needs to maximize
just P(X\Ci). Therefore, we compute

(5.8)

This greatly reduces the computation costs, since it only counts the class
distribution.

If the ith attribute is categorical, P{a.j\Ci) is estimated as the relative fre-
quency of samples having value a,j as the jth attribute in class C,. If, on the
other hand, the jth attribute is continuous, then P(a,j\Ci) is generally esti-
mated through a Gaussian density function. Both cases are computationally
easy.

When the Gaussian distribution is assumed, we have the normal density
functions given by

P(X\Ci) = * (, exp [-i(X - mi)
TSr1(X - m,)] , (5.9)

for i — 1, 2, . . . , Z, where m, and £^ are the mean vector and the covariance
matrix, respectively, for the ith class.

Bayesian classifiers are very simple, requiring only a single scan of the data,
thereby providing high accuracy and speed for large databases. Their perfor-
mance is comparable to that of decision trees and neural networks. However
there arise inaccuracies due to (a) the simplified assumptions involved and
(b) a lack of available probability data or knowledge about the underlying
probability distribution. Bayesian classifiers have the minimum error rate,
unless there are inaccuracies in their assumptions.

5.3.2.1 Example 3: Let Table 5.7 depict the attribute-class information re-
lated to a simple classification example, for which one needs to design the naive
Bayesian classifier. Consider a numeric two-attribute two-class problem, to
predict the classification of a new sample X = [01,^2] = [!>!]• We compute
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Table 5.7 Sample dataset for naive Bayesian classifier

Attributes
ai
1
0
2
1
0

a2

0
0
1
2
1

Class

Cl

Ci
C2

C2

Ci

the a priori probabilities P(C\) = | and P(C-2) = |. The conditional prob-
abilities P(ttj\Ci) are estimated, for every attribute value given in the new
sample X, as P(OI = l|d) = |, P(0l = 1|C2) = ±, P(a2 =
and P(a2 = l\Cz) = |, respectively. Assuming conditional independence of
attributes, the conditional probabilities of Eq. (5.8) become

P(a2 = - * =

and

P(X|C2) = P(fll = 1|C2) * P(a2 = 1|C2) = * = .

This is used to evaluate

and
.

Maximizing, we find that P((72|X) is larger. Hence the sample X is predicted
to be in class C2.

5.3.3 Bayesian belief network

A Bayesian network is a directed acyclic graph whose nodes represent random
variables of interests, while the edges reflect the direct (causal) influence. It
provides a graphical model of causal relationships, based on which learning
can be performed. The conditional probabilities for the nodes are given all
possible combinations of their parents. A Bayesian network is also termed a
Belief or Probabilistic net [28]. It provides an efficient and effective represen-
tation of a probability distribution, in terms of the dependencies among the
attributes. The nodes are statistically independent of their nondescendants,
given the state of their parents. This implies that one can compute conditional
probabilities of nodes, given the observed values of some nodes.
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P(a/x,z)

P(b/a)

F/g: 5.3 A belief network.

5.3.3.1 Example 4: Figure 5.3 depicts a belief network consisting of five
nodes X, Y, Z, A, B. Here X directly influences A, while Y also influences
A through Z. Each node has a number of discrete states. For example, node
X can take up states {#1, x2, . . .}, collectively denoted as x.

5.4 INSTANCE-BASED LEARNERS

These nearest neighbor rules are based on the concept of minimum distance
classification from "instances" and can involve either a single prototype or
multiple prototypes [8]. When the patterns of a class tend to cluster tightly
about a typical representative pattern for that class, we use a single prototype
from which to compute the minimum distance. Let m* be the prototype for
the i — 1, . . . , I classes, such that the distance between an arbitrary pattern
vector X and the tth prototype is given by D{.

When a non-Euclidean metric like the Mahalanobis distance is used, the
corresponding minimum distance classifier is termed the Mahalanobis classi-
fier. Here

Dl = (X- mi)
TSr1(X - m,), (5.10)

where £^ is the covariance matrix of the underlying Gaussian (or normal)
distribution for class i. When the Euclidean distance is used, we have

Dl = ||X - mid2 = X'X - 2(m5X - imjnn). (5.11)

5.4.1 Minimum distance classifiers

In this category of decision rules, one does not make assumptions of an un-
derlying statistical distribution. The minimum distance classifier computes
the distance of an unlabeled pattern X from the prototype of each class, and
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X, f

- 0

Ci

O

F/g. 5.4 Decision boundaries di for a three-class problem.

it assigns the pattern to that class to which it is closest. Ties are resolved
arbitrarily. In other words, one generates a linear discriminant function

^X — -

from Eq. (5.11), where the decision boundary is
such that = ra^-, j = l,...,n, and Wi,n+i = — |

= w^X, for i = 1, . . . , / ,
Figure 5.4 il-

lustrates the concept of the minimum distance based decision boundaries,
generated for a three-class problem with single prototypes.

When each class is characterized by multiple prototypes, the minimum
distance is computed from all of these as before. Let the ith class contain Ni
prototypes m , . . . , such that the distance

A=min||X-m*|| (5.12)

for k = l , . . . ,7Vt. The unlabeled pattern X is classified into the ith class
if Di < Dj for all j ^ i. The piecewise linear discriminant function di =
maxfe{(m? )'X) - ^m^'m?} for k = 1,..., JV4.

Instance-based learners are also called lazy learners because they store all
the training samples. This may present difficulties when learning from very
large datasets. On the other hand, decision trees and neural networks are
termed eager learners since they are able to construct a generalization model,
before receiving unknown or new samples to classify. Although lazy learners
are faster at training, they are slower during application. They incur expensive
computational costs when the number of stored samples or instances, with
which to compare a given unlabeled sample, is large.
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In this framework let us now present the fc-nearest neighbor classifier, re-
gression, radial basis function network, and case-based reasoning. The last
two can, again, be categorized as soft computing approaches.

5.4.2 ^-nearest neighbor (fc-NN) classifier

Here all the instances correspond to pattern points in the n-dimensional space.
The nearest neighbors are typically defined in terms of Euclidean distance.
The target function could be either discrete- or real-valued. In case of discrete
values, the algorithm assigns to a point X the label or class for the majority
of its fc-nearest neighbors from a sample pattern set m* € (mi , . . . , m^ } of
known classification, where /' > I and each of these instances belongs to one of
the / classes. A nearest-neighbor (NN) classification rule assigns an unlabeled
pattern X to the class of its nearest neighbor, where m* 6 {mi, . . . , m/'} is a
nearest neighbor to X if the distance

D(mi,X)=min{D(mj-,X)}, (5.13)

for j = 1, 2, . . . , / ' . A Voronoi diagram defines the decision surface induced by
a 1-NN for a typical set of training examples. A fc-NN (k > 1) rule consists
of determining the fc-nearest neighbors to X and using the majority of equal
classifications in this group as the classification of X.

For k = 1, the error rate is never worse than twice the Bayes' rate (which
holds for unlimited number of samples). For large k, the algorithm is compu-
tationally more expensive, as compared to a decision tree or neural network,
and requires efficient indexing. Moreover, it assigns equal weight to each at-
tribute, thereby accommodating no feature selection. Different approaches to
attain scalability for data mining incorporate (i) indexing to find fc-nearest
neighbors, (ii) an R-tree family, which works well up to 20 dimensions, (iii)
a Pyramid tree for high-dimensional data, and (iv) clustering to reduce the
dataset size.

5.4.2.1 Example 5: Figure 5.5 demonstrates the fc-NN rule for k = 5. Con-
sidering the five nearest neighbors around X, marked by the dotted line, we
observe that there are three instances (patterns) from class C% and two from
class C\. Taking a majority vote enables assignment of X to C^-

5.4.3 Locally weighted regression

The objective is to learn a new regression equation by weighting each training
instance based on its distance from a new instance. The regression equation
can be expressed as /(re) = WQ-\-w\a\ (x)-\ ----- (- wnan(x). The algorithm tries
to find the WiS to minimize the error

x€X
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Fig. 5.5 A fc-nearest neighbor rule for k = 5.

It constructs an explicit approximation of / over a local region surrounding
query instance Xq. The target function / is approximated near Xq using the
linear function

i z)).

The squared error is minimized using a distance-decreasing weight K.

(5.14)

5.4.4 Radial basis functions (RBFs)

The RBFs are related to distance-weighted regression and artificial neural
networks. In the framework of instance based learners, we can represent
Eq. (2.25) as

y = f(x) = (5.15)

where each Hj is an instance from the training data and K(D(iij,x)) is the
Gaussian kernel function of Eq. (2.24). Here the contribution of an instance
is non-negligible only if the input region falls in the region of the instance.
The training of an RBF can be summarized as follows:

• Choose the m kernel points HjS and the parameters of K - for example,
the variance Oj of the distribution.

• Choose the weights so as to minimize the error on the training data.

Every instance can be chosen as a kernel point, making all variances the same.
Otherwise the instances can be clustered, excluding the target function, by
using c-means or expectation maximization (EM)-like clustering algorithm [6]
and choosing a representative within each cluster.
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5.4.5 Case-based reasoning (CBR)

Cases are the symbolic representation of some typical situations, already expe-
rienced by the system. These are more complex than the simple training pat-
terns of nearest-neighbor classifiers in the Euclidean space. The instances are
conceptualized pieces of knowledge, representing an experience that teaches a
lesson for achieving the goals of the system. CBR involves [9]

• adapting old solutions to meet new demands,

• using old cases to explain new situations or to justify new solutions, and

• reasoning from precedents to interpret new situations.

The system learns and becomes more efficient as a byproduct of its reasoning
activity.

Examples of CBR encompass medical diagnosis and law interpretation,
where the knowledge available is incomplete and/or evidence is sparse. Unlike
traditional knowledge-based systems, a case-based system proceeds through
a process of (i) remembering one or a small set of concrete instances or cases
and (ii) basing decisions on comparisons between the new situation and the
old ones. The basic operations include

• Case selection, where the cases belong to the set of examples encoun-
tered, and

• Case generation, where the constructed cases need not be any of the
available examples.

Challenges in CBR include finding a good similarity metric, developing effi-
cient techniques for indexing training cases, and methods for combining solu-
tions. Some of the existing case selection methods [29] are fc-NN based, using
(i) condensed nearest neighbor (CNN), (ii) instance-based learning with case
growing or pruning (e.g., IBS), and (iii) instance-based learning with feature
weighting (e.g., IB4).

5.4.6 Granular computing and CBR

As mentioned in Section 2.3.2, granular computing1 [30] is an approach under
soft computing. An information granule is a group of similar objects clubbed
together by an indiscernibility relation. Granular computing is, therefore,
performed using the information granules and not the data points (objects).
This helps achieve information compression, leading to a computational gain.
Here the cases are considered to be informative patterns or prototypes, char-
acterizing the problem.

In the rough-fuzzy framework used in Ref. [31], cases are represented as
information granules or clusters. These involve a reduced number of relevant
features with variable size that (i) have less storage requirements, (ii) are
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amenable to fast retrieval, and (iii) are suitable for mining data with large di-
mension and size. Fuzzy sets help in the linguistic representation of patterns,
providing a fuzzy granulation of the feature space. Rough sets help in gener-
ating dependency rules to model the informative or representative regions in
the granulated feature space. Fuzzy membership functions corresponding to
these representative regions are stored as the cases.

5.5 SUPPORT VECTOR MACHINES

The Support Vector Machine (SVM) [32, 10] has recently become very popular
as a high-performance classifier in several domains including pattern recogni-
tion, data mining and Bioinformatics. It has strong theoretical foundations
and a good generalization capability. Another advantage of SVM is that, as a
by-product of learning, it obtains a set of support vectors (SVs) which char-
acterizes a given classification task or compresses a labeled dataset. Often the
number of SVs is only a small fraction of the original dataset.

The basic idea is to construct a hyperplane as the decision surface such that
the margin of separation between positive and negative examples is maxi-
mized. The structural risk minimization principle is used for the purpose.
Here the error rate of a learning machine is considered to be bounded by
the sum of the training error rate and a term depending on the Vapnik-
Chervonenkis (VC)1 dimension. Given a labeled set of N training samples
(Xi,y{), where Xi e Rn and yi € {—1,1}, the discriminant hyperplane is
defined as

N

Xi) + 6. (5.16)

Here K (.) is a kernel function and the sign of f ( X q ) determines the member-
ship of query sample Xq. Constructing an optimal hyperplane is equivalent
to determining all nonzero aiS, which correspond to the support vectors, and
the bias b.

A limitation of the SVM design algorithm, particularly for large datasets,
is the need to solve a quadratic programming (QP) problem involving a dense
TV x JV matrix, where N is the number of points in the dataset. Since most
QP routines have quadratic complexity, SVM design requires huge memory
and computational time for large data applications. However, approaches also
exist for circumventing these shortcomings [33].

A simple method to solve the SVM QP problem has been described by
Vapnik [10]. Here a 'chunking' algorithm uses the fact that the solution of the
SVM problem remains the same if one removes the points that correspond to

1The VC dimension of a system is denned as the largest set S of data samples for which
the system can implement all possible 2's' dichotomies on S, where dichotomy implies a
two-class categorization.
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zero Lagrange multipliers of the QP problem (the non-SV points). The large
QP problem can thus be decomposed into a series of smaller QP subproblems,
whose ultimate goal is to identify all the nonzero Lagrange multipliers (SVs)
while discarding the zero Lagrange multipliers (non-SVs). At every step,
chunking solves a QP subproblem that consists of (a) the nonzero Lagrange
multiplier points from the previous step and (b) a chunk of q other points.
At the final step, the entire set of nonzero Lagrange multipliers are identified,
thereby solving the large QP problem. Several variations of the algorithm exist
depending upon the method of forming the chunks [32]. Chunking greatly
reduces the training time as compared to batch learning of SVMs. However, it
may not suitably handle large-scale training problems due to slow convergence
of the chunking steps, when q new points are chosen randomly.

Active learning has recently become a popular paradigm for reducing the
sample complexity of large-scale learning tasks [34]. Instead of learning from
randomly selected samples, here the learner has the ability to select its own
training data. This is done iteratively, and the output of a step is used to
select examples for the next step. In the context of SVMs, active learning
has been used to speed up chunking algorithms [35]. The points that split
the current version space into two halves having equal volumes are selected at
each step, as they are likely to be the active SVs. This active learning strategy
queries for a single point at each step. However, a gain in computational time
can be obtained by querying multiple instances at a time. A major limitation
of this greedy method is that the selection of a new point is influenced only
by the current hypothesis (separating hyperplane) available. Hence learning
may be severely hampered if (i) a 'bad' example is queried, which drastically
worsens the current hypothesis, and (ii) the current hypothesis itself is far
from the optimal hypothesis (in the initial phase of learning), so that the
examples queried are less likely to be the actual SVs.

5.6 FUZZY DECISION TREES

In this section we embark on a soft computing-based hybridization of decision
trees with fuzzy sets. A decision tree that incorporates fuzzy set theoretic
concepts at the input, output, and/or node levels can be termed a fuzzy
decision tree. The data can be presented in fuzzy terms, the output decision
may be provided as fuzzy membership values, and the measure determining
the separability (or splitting) at the node level can be fuzzified.

The fusion of fuzzy sets with decision trees enables one to combine the un-
certainty handling and approximate reasoning capabilities of the former with
the comprehensibility and ease of application of the latter. This enhances the
representative power of decision trees naturally with the knowledge compo-
nent inherent in fuzzy logic, leading to better robustness, noise immunity, and
applicability in uncertain or imprecise contexts.
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Fuzzy decision trees [36] assume that all domain attributes or linguistic
variables have predefined fuzzy terms, determined in a data-driven manner
using fuzzy restrictions. The impurity factor, used for splitting a node, is
modified for fuzzy representation, and a pattern can have nonzero match to
one or more leaves. Techniques for the design of fuzzy decision trees have
been reported hi the literature [36]-[43].

Ichihashi et al. [37] extract fuzzy reasoning rules viewed as fuzzy partitions.
An algebraic method to facilitate incremental learning is also employed. The
intuitive factor used for splitting a node, which provides the maximal infor-
mation gain, is defined as

n, . *= , j = /c i-7\Entropy = - ̂  -^ - Iog2 —
 3— - , (5.17)

t=i

where /Zjj is the membership of the jth pattern point to the ith decision class
(leaf) and N is the total number of data objects. This uses a normalized
version of fuzzy entropy, instead of the classical entropy component involved
in the conventional expression of Eq. (5.4). If the relative frequency of a
class i is greater than a threshold, then it is termed a leaf and labeled by the

v^N
/ Mi»

corresponding class with probability **£ — •
Xizhao and Hong [38] discretize continuous attributes using fuzzy numbers

and possibility theory. Pedrycz and Sosnowski [39], on the other hand, employ
context-based fuzzy clustering for this purpose. Yuan and Shaw [40] induce a
fuzzy decision tree by reducing classification ambiguity with fuzzy evidence.
The input data are fuzzified using triangular membership functions around
cluster centers obtained using Kohonen's feature map [44]. Wang et al. [41]
present optimization principles of fuzzy decision trees based on minimizing
the total number and average depth of leaves, proving that the algorithmic
complexity of constructing a minimum tree is NP-hard. Fuzzy entropy and
classification ambiguity are minimized at node level, and fuzzy clustering is
used to merge branches.

Fuzzy knowledge-based networks [45, 46] typically incorporate fuzziness at
the network level, using fuzzy neural networks. We now describe the formula-
tion of a fuzzy knowledge-based network using fuzzy ID3 [11, 12]. Quantitative
measures are defined to evaluate the effectiveness of the fuzzy decision tree
and the linguistic rules. The novel concept of tree evaluation, in terms of
its compactness and performance, enables extraction of only meaningful (less
ambiguous) rules. A smaller or compact tree is more efficient in terms of
both storage and time requirements, tends to generalize better to unknown
test cases, and leads to the generation of more comprehensible linguistic rules.
Quantitative evaluation of the linguistic rules not only minimizes human in-
tervention, but also provides aids for knowledge discovery.

Discretization of continuous attributes, based on the distribution of pat-
tern points hi the feature space, is made in linguistic terms using quantiles.
Unlike other fuzzy decision trees [36] , this discretization to boolean form helps
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in reducing the computational complexity while preserving the linguistic na-
ture of the decision in rule form. New fuzziness measures, in terms of class
memberships, are used at the node level of the tree to take care of overlap-
ping classes. The extracted rules are mapped onto a fuzzy knowledge-based
network. Unlike [22]-[24] , the frequency of samples (representative of a rule)
and the depth of the attributes in the decision tree are incorporated during
the mapping. The effectiveness of the model is demonstrated on benchmark
datasets [12].

5.6.1 Classification

Here we describe the incorporation of fuzziness at the input, output, and
node levels of the fuzzy IDS [12], to handle different forms of uncertainty.
Input attributes are automatically discretized in linguistic terms, based on the
distribution of pattern points in the feature space. Different forms of fuzzy
entropy are computed at the node level, in terms of class membership, to
take care of overlapping classes. Pruning is used to minimize noise, resulting
in a smaller decision tree with more efficient classification. A new metric,
called T-measure, is developed to evaluate the decision tree both in terms of
performance and size.

5.6.1.1 Fuzziness at input Any input feature value is described in terms of
some combination of overlapping membership values in the linguistic property
sets low (L), medium (M), and high (H). An n-dimensional pattern X, =
[ai, 02, . . • , an] is represented as a Sra-dimensional vector [47]

(5.18)
where the p, values indicate the membership functions of the corresponding
linguistic functions low, medium, and high along each feature axis. Each
p, value is then discretized, using a threshold (generally 0.5), to enable a
convenient mapping in the IDS framework. This discretization to boolean
form speeds up computation by reducing the complexity of the search space.
However, the linguistic flavor of the attributes is retained, thereby enabling
the extraction of more user-friendly natural rules that are then mapped to the
fuzzy knowledge-based network.

When the input feature is numerical, we divide it into three partitions (with
range [0, 1]) using only two parameters PJI and PJZ as depicted in Fig. 5.6.
Features in linguistic and set forms can also be handled. Quantiles or partition
values2 [48] are used in order to minimize the influence of extreme values or
noisy patterns.

2 Quantiles or partition values are the values of a variate which divide the total frequency
into a number of equal parts.
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Fig. 5.6 Linguistic input membership functions.

Let -Fjmax and Fjmin denote the maximum and minimum values encoun-
tered along feature Fj considering N training patterns Fij,F2j,..., FNJ. Let
these patterns be sorted in the ascending order of their values along the jih
axis. The first quantile (Pj\) is the value of Fj that exceeds one-third of the
measurements and is less than the remaining two-thirds. The second quantile
(Pji) is the value of Fj that exceeds two-thirds of the measurements and is
less than the remaining one-third. In order to determine the two quantiles, we
divide the measurements into a number of small class intervals of equal width
6 and count the corresponding class frequencies /;. The position of the fcth
partition value (here quantile, as k = 1,2 for three partitions) is calculated as

Ji
(5.19)

where li is the lower limit of the ith class interval, Rk = -£- is the rank of the
fcth partition value, and c/j_i is the cumulative frequency of the immediately
preceding class interval, such that c/i_i < Rk < cfi. Then, from Fig. 5.6, we
have
AVJI = •••*»**—•*-, Avj2 =-*"•$••**•, and AVJZ = -tf-t^wAx.

The membership values of a pattern along the jth axis, in the corresponding
three-dimensional linguistic space of Eq. (5.18), is computed as [12]

for Fij < AVJI
forAvjl<Fij<Pj2

otherwise,
(5.20)

for F^ <

otherwise,

(5.21)
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(5.22)

5.6.1.2 Output membership and fuzzy entropy Consider an J-class problem
domain. The membership of the ith pattern in class fc, lying in the range
[0,1], is denned as [47]

/^(X<) = ' (5'23)

where z^ is the weighted distance of the training pattern X, from class Ck ,
and the positive constants fd and fe are the denominational and exponential
fuzzy generators controlling the amount of fuzziness in the class membership
set.

Fuzziness is incorporated into the IDS algorithm at the node level by mod-
ifying the conventional decision function, with classical Shannon entropy, by
the inclusion of different fuzzy measures. The fuzzy entropy considers the
membership of a pattern to a class and helps enhance the discriminative power
of an attribute. In order to reduce the effect of noise or exceptions, a node is
pruned depending on the number of patterns reaching it. For this purpose, a
threshold t is denned as a lower bound on the fraction of patterns allowed in
an existing node.

Let us now provide the different fuzzy entropy or fuzziness measures, de-
noted as cases a, b, d, and e, respectively, investigated at the node level of
the decision tree. Note that //»., , the membership of the jih pattern to the ith
class, is calculated by Eq. (5.23) and pk is the a priori probability of the kth
class. Comparison is provided with cases c [37] and / [49] .
Case a [12]:

I I N

Entropy = - p{ Iog2pi-— [/zy Iog2 /zy + (1 - j*y) Iog2(l - /zy )] •

(5.24)
The first term on the right is the classical entropy of Eq. (5.4), while the
second term corresponds to fuzzy entropy [47],
Case b: Same as Case a, but without pruning.
Case c: Method of Ichihashi et al. using Eq. (5.17).
Case d [12]: Entropy =

TN u. - 1 l N
, 2^,j=l ^3 1 v-^ V^ r i , /i M /-i M
Iog2 ~^ -- 2^ [ftij Iog2 Hij + (1 - Aiy ) Iog2(l - /%)]E 2^j=

- J
i=l i=l j=l

(5.25)
This is an amalgamation of the two forms of fuzzy entropy, where the first
term on the right corresponds to Eq. (5.17) and the second term relates to
the fuzzy entropy part of Eq. (5.24).
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Case e [11]:

I 1 I N

Entropy = -^ Pi Iog2 Pi - j-j ̂  ]C min(^ » * ~ A*y )• (5-26)
t=l i=l j=l

Here the first term on the right is the classical entropy of Eq. (5.4), while the
second term corresponds to a fuzzy measure of the ambiguity present. When
the class membership values are zero or one (crisp), the expression boils down
to that of classical entropy. The fuzzy measure ensures that pattern points
lying in overlapping regions are assigned lower weights during the construction
of the decision tree; this is intuitively appealing. The reason for this lower
weighting is that such ambiguous patterns (having p, values close to 0.5) lead to
an increase in the entropy; thereby placing an impedance to its minimization.
Case f: Conventional IDS algorithm, using Eq. (5.4).

5.6.1.3 Performance measure for decision tree Decision trees generated by
different fuzzy entropy measures may vary in size and structure, and this
influences the performance of both the tree and the rules extracted from it. In
order to evaluate the efficiency of a decision tree the T-measure is introduced
[12], keeping in view the following issues:

• The less the depths of the leaf nodes of the tree, the better it is since it
takes less time to reach a decision.

• The existence of unresolved terminal nodes is undesirable.

• The distribution of labeled leaf nodes at different depths affects the
performance of the tree; a tree whose frequently accessed leaf nodes are
at lower depths is more efficient in terms of time.

DEFINITION 5.6.1 The T-measure, T, for a decision tree is defined as

where

{ T-f for a resolved leaf node ,_ rt0,
2N- it • (5.28)^^ otherwise,

n is the number of binary attributes of a pattern, di is the depth of a leaf node,
Ninodes w the number of terminal (leaf or unresolved) nodes, N is the total
number of patterns in the training set, and Ni is the total number of training
set patterns that percolate down to the ith leaf node. The value ofT lies in the
interval [0,1). A value 0 forT is undesirable, and a value close to 1 signifies
a good decision tree.

Let us demonstrate the evaluation of the T-measure with an example. Con-
sider a two-class problem, with two-dimensional patterns. Let Fig. 5.7 depict



FUZZY DECISION TREES 211

Fig. 5.7 Example demonstrating T-measure computation.

two decision trees generated by two different algorithms. For the decision tree
in Fig. 5.7(a), T = 2 x 2 - 0.5 * 1-0.4 x 2 - 0.2 x 2 = 0 7?? while for the de_

2 x 2 - 0.5 i - 0.2 x 2cision tree in Fig. 5.7(b) one obtains T =
0.73. Hence we observe that the first decision tree is better than the second,
since the fraction of patterns in the node at depth one is more in the first
case.
Theorem. The value of T-measure lies within 0 and 1, that is, 0 < T < 1.
Proof: Let us first establish the upper limit. By Eq. (5.28), we have

N-

and

Hence

(5.29)

(5.30)

E
lnod" , . v^" Ni

Widi * 2^ Jf
t=i i-l

Since X)^i°d" -^ = ^> one obtains

t=l

So

that is,

2n —

idi > 1.

id\ < 2n —

2n - 1
(5.31)
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Now we check the lower bound for T. We have

Wi < -j^-, i = l,2,...,Ninodea (5.32)

and
di<n, i=l,2,...,Nlnodea. (5.33)

Hence
Nlnodea f^l-nodi

that is,

0 < 2 n -

that is,

o < - . =T.
2n -1

Thus one obtains
0 < T < 1. (5.35)

5.6.2 Rule generation and evaluation

Here we explain the algorithm for extracting domain knowledge, in the form of
rules, using the decision tree generated by the fuzzy ID3 [12]. As explained in
Section 5.2.7, the path from the root to a leaf is traversed to generate the rule
corresponding to a pattern from that class. In this manner, one obtains a set
of rules for all the pattern classes, in the form of intersection of the features or
attributes encountered along the traversal paths. The ith attribute is marked
as Ai or Ai depending on whether the traversal is made along the right or left
branch. Each rule is marked by its frequency - that is, the number of pattern
points reaching this leaf node. Note that each leaf node that has pattern
points corresponding to only one class is termed resolved.

5.6.2.1 Example 6: The scheme of extracting the rules from the decision
tree is demonstrated with an example. Suppose the training set consists of
21 patterns, from three pattern classes, with three features FI, F2, and FS.
After splitting each feature into the three linguistic variables low, medium,
and high by Eq. (5.18), one obtains the nine-dimensional symbolic features
LI, MI, HI, L-2, M2, H2, L3, M3, H3. Let the sample decision tree be shown
in Fig. 5.8, and let the extracted rules be

2. LI A M3 A MI -» <72; 6,
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resolved node

unresolved node

Fig. 5.8 Sample decision tree for rule generation.

3. LI A M3 A MI

4. I/i A M3 A

5. LI A MS A L3

', 3,

; 5,

5.6.2.2 Quantitative measures for rule evaluation The quantitative indices
accuracy, user's accuracy, kappa, and confusion, as explained in Section 2.4.2
with reference to ANNs, are used for evaluating the extracted rules. A new
measure to estimate the coverage of these rules is designed in the context of
decision trees [12].

DEFINITION 5.6.2 Coverage is defined as the ratio between the total number
of patterns associated with the rules corresponding to resolved leaf nodes, and
the total number of patterns in all the rules and hence the terminal (resolved
and/or unresolved) nodes.

When the rules can perfectly classify all the patterns, then coverage is 1, and
when they cannot classify any pattern, then it is 0.

5.6.2.3 Example 7: For example, from Fig. 5.8 we have

2 + 6 + 5 + 5 18
Coverage =

2 + 6 + 3 + 5 + 5 21
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5.6.3 Mapping of rules to fuzzy neural network

In this section we describe the mapping of the extracted rules to generate
an optimal fuzzy knowledge-based neural network. The 3n-dimensional in-
put vector of Eq. (5.18) is clamped at the input layer to the input nodes
[y?5 2/2' • • • ' 2/3nl- Here yj , . . . , y®n refer to the activation values of the 3ra neu-
rons in the input layer of the network depicted in Fig. 2.3. The /-dimensional
output vector, in terms of class membership values (/z) of patterns [Eq. (5.23)],
is clamped at the / nodes in the output layer of the MLP. During training, the
weights are updated by backpropagating errors with respect to these mem-
bership values such that the contribution of uncertain or ambiguous pattern
vectors is automatically reduced.

Let rki be the ith rule for class Ck with frequency f'ki. Each rule is
mapped using a single hidden node, modeling the conjunct, that connects
the attributes corresponding to the appropriate pattern class. Therefore, one
generates at least / hidden nodes in a single hidden layer for an Z-class problem.
For simplicity, rules involving only one class (pertaining to leaves) are selected
and those corresponding to unresolved nodes of the decision tree are discarded.
If there are two rules for a single class Cjt, then that rule with the highest
frequency is considered. Hence we use only / hidden nodes to model I classes.
This constraint can of course be relaxed to incorporate other rules, albeit at
the cost of increasing the size and computational complexity of the resultant
network.

5.6.3.1 Example 8: The sample rules generated from Fig. 5.8 thus reduce to

1. LI AM3 AM! -» <72; 6,

2. LI AM 3 AL 3 -f Ci\ 5,

3. LI AM3 AL3-> C3; 5.

5.6.3.2 Network encoding These rules are used to initially encode an MLP,
which then learns in the presence of training data. It is to be noted that these
rules just serve as representatives, describing the major characteristics of the
pattern classes, and as the starting point of the MLP for further learning.
Therefore, the representative rulebase need not be too detailed or accurate;
rather, a crude knowledge is sufficient to initiate the training procedure. This
is the reason for sacrificing accuracy at the expense of simplicity at the decision
tree level, by pruning the nodes and limiting the size of the extracted rulebase.
The generalization aspect and other intricacies of the decision boundary are
handled after the network mapping phase, during neural learning.

The weight w^, between output node k (class Ck) and hidden node i (rule
rt

rjfcj) is set at W = ^ *?, where f'ki = 1. This indicates the importance of
zLik * fc<

this rule among all other rules determining the whole network. The scheme
for mapping weight w®a. between attribute a,j (Lj or Mj or Hj) and hidden
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Output Layer

Hidden Layer

Input Layer

Fig. 5.9 Weight encoding scheme.

node i depends on the importance of feature a, in the corresponding decision
tree. Consider Fig. 5.8. We note from sample rule (2) that the attributes are
selected in the order LI, M3, L3 for class C\. So the weight w®a. is assigned

a value Ca^Lr^icardlr^\+il * ̂ ' wnere Card(rki) indicates the number of
features or attributes encountered along the traversal path from the root to
the leaf containing the corresponding pattern. In other words, Card(rki) is
the number of operands in the conjunct of rule Tki for class Cfc. It is to be
noted that

Card(rfci)

E
2[Card(rki)-j

Card(rki)[Card(rki)
w. (5.36)

5.6.3.3 Example 9: An example illustrating this scheme is provided in Fig. 5.9
for class C\. Sequentially, for j = 1,2,3, we obtain

2[3 -1 +1] 1
3[3 + l] *^=2^

and

2(3-2 + 1]
3(3 + 1]

3(3+1]

Here the negative sign in the last expression takes care of the negation of the
corresponding attribute £3.
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Fig. 5.10 Vowel diagram in F\—Fi plane.

5.6.4 Results

The system was implemented on benchmark datasets, the detailed results of
which are available in Ref. [12]. Different sizes of training sets were selected
at random, and in each case the remaining data were kept aside as the test
set. All results were averaged over 40 runs. The threshold t for pruning a
node of the decision tree was set at 0.2 after several experiments.

In this section we provide sample results on two datasets, namely, Vowel
and Balance scale. The Vowel data consists of a set of 871 Indian Telugu
vowel sounds [47], uttered by three male speakers in the age group of 30 to 35
years, in a Consonant-Vowel-Consonant context. The three features FI, FZ,
and FS correspond to the first, second, and third vowel formant frequencies
obtained through spectrum analysis of the speech data. Figure 5.10 shows a
2D projection of the 3D feature space of the six vowel classes d, o, z, u, e, o in
the F\-F-2 plane, for ease of depiction. The boundaries of the classes in the
given data set are ill-defined (fuzzy).

The Balance scale data [50] consists of 625 instances generated to model
psychological experimental results. There are four numeric attributes corre-
sponding to the left weight, left distance, right weight, and right distance, and
there are three output classes, namely, tip right, tip left, and balanced.

The fuzzy IDS (Table 5.8) is used, for the different fuzzy measures in-
volving cases a to /, to extract rules that are then quantitatively evaluated
(Tables 5.9 and 5.10). These are then used for generating fuzzy knowledge-
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Table 5.8 Performance of fuzzy IDS

Case

a

b

c

d

e

f

Train
set
(%)
10
20
30
40
50
10
20
30
40
50
10
20
30
40
50
10
20
30
40
50
10
20
30
40
50
10
20
30
40
50

Vowel
Recognition score (%)
Training

81.1
77.6
75.9
74.7
74.9
77.2
73.5
69.9
65.6
63.0
79.5
76.1
74.8
74.1
73.2
79.0
76.3
74.2
74.5
74.1
66.0
61.3
58.1
58.9
58.8
63.3
57.7
57.1
57.2
56.5

Testing
72.8
71.9
72.6
71.0
73.1
70.7
68.8
64.5
62.8
61.6
70.4
70.0
70.4
70.6
73.1
70.3
71.5
70.3
71.1
70.3
63.6
64.5
62.3
60.4
60.7
52.7
51.4
48.1
48.4
44.5

T

.70

.69

.68

.67

.67

.53

.53

.53

.53

.53

.70

.69

.70

.69

.67

.71

.71

.69

.69

.69

.64

.61

.60

.60

.60

.64

.61

.60

.60

.59

Balance scale
Recognition score (%)
Training

89.8
86.0
83.2
84.1
81.9
92.4
85.6
79.7
77.3
74.3
90.1
84.5
80.6
76.1
75.1
89.8
85.2
78.9
76.6
73.0
71.1
64.7
69.8
68.5
69.2
71.0
65.7
69.6
69.0
72.7

Testing
79.4
80.7
80.9
81.1
79.8
80.2
76.9
76.6
74.7
70.9
75.2
76.0
75.9
73.9
71.7
77.6
76.4
75.9
74.1
72.4
65.4
67.5
68.7
67.0
68.5
63.8
68.1
68.8
69.1
68.2

T

.81

.78

.78

.78

.76

.52

.52

.52

.52

.52

.52

.52

.52

.52

.52

.52

.52

.52

.52

.52

.75

.71

.70

.68

.69

.75

.72

.72

.70

.70
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Table 5.9 Quantitative measures for evaluating rules in Vowel data

Case

a

b

c

d

e

f

Train
set (%)

10
20
30
40
50
10
20
30
40
50
10
20
30
40
50
10
20
30
40
50
10
20
30
40
50
10
20
30
40
50

Accuracy
(%)

63.20
62.70
59.74
59.62
60.06
60.33
60.14
60.52
59.46
60.18
70.81
66.90
65.59
62.62
60.92
71.55
65.26
62.04
62.22
59.22
60.69
59.70
53.59
53.39
53.27
60.36
57.15
57.10
55.72
55.67

User's
accuracy (%)

72.67
73.15
75.47
77.14
75.40
71.45
73.58
77.63
79.36
80.65
87.14
84.66
84.08
84.20
83.00
86.45
84.80
81.42
82.82
83.22
77.22
71.80
74.64
73.95
72.71
63.00
66.00
66.00
67.00
67.00

Kappa

0.67
0.67
0.70
0.72
0.70
0.65
0.67
0.72
0.75
0.77
0.85
0.81
0.81
0.81
0.80
0.83
0.82
0.78
0.80
0.80
0.72
0.67
0.70
0.69
0.68
0.57
0.60
0.61
0.61
0.61

Confusion

2.30
2.37
2.37
2.20
2.34
2.54
2.24
2.26
2.38
2.06
1.78
2.04
2.37
2.32
2.14
1.84
2.07
2.27
2.26
2.20
2.19
1.89
1.93
1.99
1.92
2.13
2.29
2.11
1.97
2.16

Coverage

0.80
0.78
0.72
0.73
0.75
0.76
0.79
0.73
0.69
0.72
0.78
0.75
0.75
0.72
0.70
0.77
0.74
0.72
0.71
0.68
0.71
0.60
0.54
0.52
0.52
0.73
0.60
0.54
0.50
0.47
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Table 5.10 Quantitative measures for evaluating rules in Balance data

Case

a

b

c

d

e

f

Train
set (%)

10
20
30
40
50
10
20
30
40
50
10
20
30
40
50
10
20
30
40
50
10
20
30
40
50
10
20
30
40
50

Accuracy
(%)

84.76
78.80
75.48
76.26
73.44
86.13
77.06
70.13
66.04
62.34
81.78
77.04
73.96
74.14
73.37
73.94
77.12
74.52
74.10
73.94
67.51
78.92
75.59
74.68
74.36
78.00
77.49
75.86
73.17
67.51

User's
accuracy (%)

91.72
89.93
88.93
89.15
88.62
97.41
98.47
99.75
99.60
100.00
89.37
90.34
88.70
87.71
85.98
87.01
89.68
87.98
88.65
87.01
71.78
88.45
89.20
87.90
87.30
89.08
88.34
88.42
88.18
71.78

Kappa

0.87
0.85
0.83
0.84
0.84
0.96
0.97
1.00
0.99
1.00
0.83
0.85
0.83
0.81
0.79
0.81
0.84
0.81
0.84
0.81
0.53
0.82
0.84
0.83
0.82
0.83
0.83
0.83
0.83
0.53

Confusion

1.73
1.65
1.80
1.85
1.77
2.38
2.62
2.93
2.92
3.00
1.78
1.68
1.75
1.58
1.68
1.52
1.68
1.60
1.70
1.52
1.36
1.70
1.75
1.77
1.80
1.72
1.70
1.70
1.82
1.36

Coverage

0.92
0.86
0.83
0.84
0.80
0.88
0.77
0.70
0.66
0.62
0.90
0.84
0.81
0.82
0.83
0.82
0.84
0.82
0.81
0.82
0.91
0.87
0.83
0.83
0.83
0.85
0.86
0.84
0.80
0.91
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based network (Table 5.11). The classification performance is provided for all
three stages. Generally the knowledge-based networks result in better per-
formance, in terms of network size and recognition scores. This is natural
since the crude domain knowledge is encoded and further refined here, in the
presence of training data.

Table 5.11 Performance of knowledge encoded MLP

Dataset

Vowel

Balance
scale

Model

MLP

Knowledge-
encoded

MLP

MLP

Knowledge-
encoded

MLP

Train
set (%)

10
20
30
40
10
20
30
40
10
20
30
40
10
20
30
40

Recognition scores (%)
Training

93.3
87.5
82.6
76.8
88.7
86.0
82.9
80.8
98.3
91.8
91.8
91.3
94.8
91.9
91.3
90.0

Testing
78.9
79.6
79.4
77.6
78.5
80.3
80.2
79.0
82.8
87.5
87.8
88.6
82.7
87.3
89.1
88.9

No. of
links
90.5
91.2
91.4
91.8
63.6
68.3
66.5
64.2
46.2
47.8
48.4
47.1
39.4
37.0
35.7
38.8

No. of
cycles

242
203
106
27
102
50
35
25
309
331
307
312
277
272
252
247

Knowledge encoding using linguistic rules extracted from the fuzzy decision
tree generally enhances the performance of the knowledge-based system in
terms of both network compactness and recognition scores. It is typically
observed that the value of T decreases with an increase in size of the training
data. This is because an increase in training set size leads to the consideration
of a larger number of both noisy and good samples during the decision tree
generation. The former influences the formation of a tree of greater depth,
with an increased possibility of larger number of unresolved nodes, leading to
a lower value of T.

5.7 CONCLUSIONS AND DISCUSSION

In this chapter we have described classification from the perspective of data
mining. Different decision tree classifiers have been presented, followed by
statistical models like the Bayesian classifier. Next we dealt with Instance-
based learners — like the minimum distance classifier, nearest-neighbor classi-
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fier, radial basis function, and case-based reasoning - and the Support Vector
Machine. Finally, fuzzy decision trees are described.

Greedy splitting heuristics are efficient and adequate for most decision tree
applications, but are essentially suboptimal. Crisp decisions that the trees
usually output may not be adequate or useful in some settings. Therefore,
sometimes results from multiple decision trees are combined to improve upon
generalization accuracy. Current research issues involved with decision trees
include (i) multiple splits on continuous attributes, using multi-interval dis-
cretization of continuous attributes [51], (ii) multi-attribute tests on nodes
to handle correlated attributes, using multivariate linear splits as in oblique
trees [1], (iii) methods of handling missing values, by either assuming the ma-
jority value, or taking the most probable path, (iv) allowing varying costs for
different attributes, and (v) generation of optimal trees.

The design of a fuzzy knowledge-based network, based on linguistic rules
extracted from a fuzzy decision tree [12], has also been described. Its major
contributions include: (a) developing a new scheme for automatic linguistic
discretization of continuous attributes using quantiles, (b) introducing the
novel concept of a quantitative measure T to evaluate the goodness of the
decision tree, in terms of its compactness and performance, (c) evaluating
quantitatively the extracted linguistic rules with some new indices, (d) map-
ping the linguistic rules to a fuzzy knowledge-based network, incorporating
frequency of samples and depth of attributes in the decision tree, and (e) using
new fuzziness measures at the node level of the tree, to handle overlapping
classes.

In this soft computing framework we integrate the generic merits of decision
trees, like efficient exploration of large data, along with the uncertainty han-
dling capability of fuzzy sets. It enhances the understandability of a decision
by providing rules in linguistic form. Thereby, it improves the human-machine
interaction in a system.

In the following chapter we move on to another major function of data
mining, namely, unsupervised learning or clustering.
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6
Clustering in Data

Mining

6.1 INTRODUCTION

Clustering is a useful technique for the discovery of some knowledge from
a dataset. It maps a data item into one of several clusters, where clusters
are natural groupings of data items based on similarity metrics or probability
density models. Clustering pertains to unsupervised learning, when data with
class labels are not available.

For example, when introducing a new product in the market, one groups
or clusters the existing customers based on time series of payment history
such that similar customers lie in the same cluster. The key requirement is
the need for a good measure of similarity between the instances or patterns.
This can help to identify micro-markets and develop separate policies for each.
Analogously, one can group students of similar intelligence levels together so
that efficient teaching strategies may be developed for each cluster.

The problem is to group N patterns into c desired clusters, such that
the data points within clusters are more similar than across clusters. Some
sample applications of clustering lie in customer segmentation, market basket
customer analysis, attached mailing in direct marketing, and clustering of
companies with similar growth.

Clustering is also very important in multimedia data mining, in order to
cluster similar multimedia contents together for efficient indexing and stor-
age in multimedia databases. For example, similar pictures can be clustered
together for efficient indexing; thus, when a query is requested using a query
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image or image description, then all the similar images can be effectively
retrieved.

Clustering of data is broadly based on two approaches, namely, hierarchical
and partitive [1,2]. In partitional algorithms, the goal is to find a partition of c
clusters that optimizes the chosen partitioning criterion. If a global optimality
is desired, then one needs to exhaustively enumerate all partitions. Heuristic
methods like the c-means and c-medoids have been designed to circumvent
this problem. In the c-means algorithm [3], each cluster is represented by the
center of gravity of the cluster. This need not essentially correspond to an
object of the given pattern set. In the c-medoids algorithm [4], on the other
hand, each cluster is represented by one of the representative objects in the
cluster located near the center. A few variants of the c-means algorithm differ
in (i) the selection of the initial c means, (ii) dissimilarity calculations, and
(iii) strategies to calculate the cluster means.

Partitioning Around Medoids (PAM) [4] starts from an initial set of medoids,
and it iteratively replaces one of the medoids by one of the nonmedoids if it
improves the total distance of the resulting clustering. Although PAM works
effectively for small data, it does not scale well for large datasets. The al-
gorithms CLARA [4], CLARANS [5] (using randomized sampling), and the
focusing technique for spatial data structures [6] are capable of dealing with
the scalability issue.

Hierarchical methods can again be categorized as agglomerative and divisive
algorithms, corresponding to bottom-up and top-down strategies, to build a
hierarchical clustering tree (dendogram). The optimal number of clusters is
usually determined based on a validation index. There exist several clustering
algorithms and validation indices in literature [1, 7], but they conventionally
deal with numerical or quantitative data.

One of the major challenges to data mining [8, 9] is handling of mixed media
data. This implies learning from data that is represented by a combination
of various media, like (say) numeric, symbolic, images, text, etc. Symbolic or
categorical clustering refers to the clustering of symbolic or categorical data.
This is important from the point of view of data mining, where one has to mine
for information from a set of symbolic objects. These objects are defined by
attributes that can be quantitative (numeric or intervals) as well as qualitative.
The similarity and dissimilarity measures between symbolic objects are often
determined based on their position, span, and content features [10, 11].

Conceptual clustering [12, 13], from the Machine Learning community, is
also applicable to a mixture of numeric, ordinal, and symbolic data. Here
the focus is on interpretability or meaningfulness of the generated patterns,
so that objects are clustered according to the concepts that they carry. The
algorithm preserves cohesiveness within clusters while maintaining clear dis-
tinctness between clusters. Nonparametric probabilistic measures are used to
determine the groupings.

This chapter is organized as follows. Section 6.2 elucidates the different
distance measures and the concept of symbolic objects. The conventional
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clustering categories are described in Section 6.3. The scalable versions of
clustering algorithms, suitable for large data, are provided in Section 6.4. Soft
computing-based approaches are dealt with in Section 6.5. Clustering with
categorical attributes and symbolic clustering are described in Sections 6.6
and 6.7, respectively. Section 6.8 concludes the chapter.

6.2 DISTANCE MEASURES AND SYMBOLIC OBJECTS

Before moving on to clustering methodologies, let us explain what distance
between a pair of objects refers to. In the context of mixed media data, the
distance cannot be constrained to the numeric domain. Hence we need to
compute distances between binary, nominal, and symbolic objects as well.
The,similarity measure and distance computation is also an integral part of
multimedia data indexing, retrieval, and data mining techniques.

6.2.1 Numeric objects

Distances are normally used to measure the similarity or dissimilarity between
two data objects Xi and Xj. The larger the similarity, the smaller the dissim-
ilarity and hence the smaller the distance between the pair of objects. In the
numeric domain, a popular measure is the Minkowski distance. It is defined
as

d(Xit Xj) = (\Xtl - Xh \< + (\Xia - X^ + • - • + (\Xin - Xjn\«)< , (6.1)

where q is a positive integer and n is the number of attributes involved. If
9 = 1 , then d is termed Manhattan distance, while for q = 2 it is called the
Euclidean distance. One can also use weighted distance or other dissimilarity
measures [14].

6.2.2 Binary objects

In case of every pair of binary objects, a contingency table is designed. This
is depicted in Table 6.1. Let there be two objects, such that location (1,1) of
the 2 x 2 matrix denotes the number of features for which both take on values
one. Analogously, location (2,2) corresponds to the number of features for
which both Xi and Xj have values zero. Here b, c correspond to the occasions
when the values of Xi and Xj mismatch.

The simple matching coefficient is used if the binary variable is symmetric.
For example, in case of attribute gender, both states female and male are
equally valuable and carry the same weight. Here the distance is invariant
and is measured as

d(Xi,Xj) = [ + C ,. (6.2)v 3I a+b+c+d v '
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Table 6.1 Contingency table for binary variables

Xi
1
0
Sum

Xi
1
a
c

a + c

0
b
d

b+d

Sum
a + 6
c + d

n

When the binary variable is asymmetric, the Jaccard coefficient is used. For
example, the positive outcome of a disease test is considered more important
than a negative outcome. Here the negative match of two zeros (corresponding
to d in Table 6.1) is ignored. The measure is noninvariant and is defined as

d(Xi,Xj) =
b + c

a + b + c'
(6.3)

6.2.2.1 Example 1: Let us consider an example to illustrate the process us-
ing Table 6.2. Let Sam, Mita, and Harry be three objects whose attributes
correspond to their gender, symptoms (temperature, cold), and results of four
tests. Here gender is a symmetric attribute, while the remaining are all asym-
metric. Let the values Y and P be set to 1, and the value N be set to 0.
(Here Y, P, and N correspond to symbolic outputs yes, positive and negative,
respectively.) Considering only the asymmetric attributes, using Eq. (6.3), we
have

d(Sam, Mita) =v ' n ,
2+0+1

= 0.33,

and

d(Sam, Harry) = = 0.67,

1+2
d(Harry, Mita) = = 0.75.

1 + 1 + 2

Table 6.2 Example to compute distance between binary objects

Name
Sam
Mita
Harry

Gender
M
F
M

Temperature
Y
Y
Y

Cold
N
N
P

Test 1
P
P
N

Test 2
N
N
N

Test 3
N
P
N

Test 4
N
N
N
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6.2.3 Categorical objects

Nominal (or categorical) variables are a generalization of binary variables, in
that each can take up more than two states. For example, color can be {red,
yellow, blue, green}. One can use simple matching, considering p to be the
total number of features and m to be the number of matches where Xi and
Xj have the same state. Then using Eq. (6.2) we have

(6.4)

Another option would be to use a large number of binary variables, creating
a new binary variable for each of the M nominal states.

There can be other types of variables as well. An ordinal variable can be
discrete or continuous but, unlike nominal variables, here the order is impor-
tant. An example of such a variable is rank. An interval variable specifies a
lower and upper limit, between which its value lies. Variables can also be of
mixed types, where a database may contain a mixture of numeric, symmetric
binary, asymmetric binary, nominal, ordinal, and interval variables.

6.2.4 Symbolic objects

Let us now describe symbolic objects and the different dissimilarity measures,
expressed as the distance between them. Symbolic objects are defined as the
logical conjunction of events linking values and variables. The following are
two examples of events: e\ = [color = {white, blue}], e^ = [height = [1.5-
2.0]]. Here e\ indicates that the variable color takes a value either white or
blue, while e2 indicates that the variable height takes a value in the interval
between 1.5 and 2.0, that is, 1.5 < height < 2.0. For simplicity, we can
drop the variable name and only take the value of that feature variable. Two
symbolic objects A and B are written as the Cartesian product of features
Ak and Bk, represented by A = AI x • • • x An and B = BI x • • • x Bn. Let
Ok denote the domain of the kth feature. Then the feature space can be
expressed as a Cartesian product O^ = O\ x • • • x On.

The dissimilarity between two symbolic objects A and B is defined in terms
of their distance involving position £)p, span Ds, and content Dc components
[10, 11]. We have

_ . , . D . |Y (lower limit of Ai -lower limit of £, | \
Dp(Ai, Bi) = cos 1 - ' : — —: ——-—; * 90

[ \ length of maximum interval along feature i)
(6.5)

where the denominator indicates the difference between the highest and lowest
values of the zth feature over all the objects. This measure holds for quan-
titative attributes only. The remaining two measures are defined for both
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quantitative and qualitative attributes.

D (A- B •) - cos [length of ̂ l + jlength of B,|U.(A.t a.) - cos * 9U ,

where span length denotes the length of the minimum interval containing both
Ai and Bi for quantitative values. The length of a qualitative feature value is
the number of its elements, and the span length of two such feature values is
the number of elements in their union.

^ / „ ,-. x [length of intersection of Ai and J5» 1 ,„ „,
Dc(Ai, Bi) = cos —2 - - j— - 1 * 90 . (6.7)

[ span length of Ai and Bi \

Hence the distance D(A, B) becomes

n

D(A,B) = Y^D(Ai,Bi), (6.8)
i=l

where
Bi) = Dp(Ai, Bi) + Ds(Ai, Bt) + DC(A^ Bt)

with Dp, Ds, and Dc normalized to [0,1] as per Eqs. (6.5)-(6.7).

6.3 CLUSTERING CATEGORIES

Clustering consists of partitioning data into homogeneous granules or groups,
based on some objective function that maximizes the intercluster distances
while simultaneously minimizing the intracluster distances. Traditional clus-
tering algorithms can be broadly categorized into two main types [3] . Partitive
algorithms like c-means divides the patterns into a set of spherical clusters,
while minimizing the objective function. Here the number of clusters is pre-
defined. Hierarchical methods, on the other hand, can again be grouped as
agglomerative and divisive. Here no assumption is made about the shape or
number of clusters, and a validity index is used to determine termination.

6.3.1 Partitional clustering

It basically involves enumerating c partitions, optimizing some criterion, over
t iterations. The most commonly used numeric distance function is the square
error, defined as $^=1 I^xet; H^ ~ m*ll2' wnere mt is tne mean of cluster £/»
and X is the pattern vector (data object). The computational complexity of
the algorithm is O(N * c * t), where c, t « N. Generally, this works for well-
separated, convex clusters. It is also scalable and efficient for large datasets.
Even for very large databases, it is possible to work in a memory-efficient way
with a small number of representatives and only periodic disk scans of the
actual patterns.
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Some of its drawbacks are as follows. It prefers splitting large clusters, and
the gain from such splits can offset the merging of small clusters. A mean
is not defined for categorical attributes and/or symbolic objects. Hence the
algorithm cannot be used in applications involving categorical data, since it
typically minimizes a cost function by changing the means of clusters. The
algorithm is sensitive to noise and outliers, and it often terminates at a local
optimum. The global optimum may, however, be found using techniques such
as deterministic annealing and genetic algorithms. Finally, there is an inherent
need to specify the value of c.

6.3.1.1 c-means algorithm The algorithm proceeds by partitioning the N
objects into c nonempty subsets. During each partition, the centroids or
means of the clusters are computed. The main steps of the c-means algorithm
[3] are as follows:

• Assign initial means m^ (also called centroids).

• Assign each data object (pattern point) X& to the cluster Ui for the
closest mean.

• Compute new mean for each cluster using

where \Ci\ is the number of objects in cluster £/».

• Iterate until the criterion function converges, that is, there are no more
new assignments.

6.3.1.2 Example 2: Let us consider four two-dimensional samples Xi =
(1,1), X2 = (2,2), X3 = (3,8), X4 = (4,8), to be clustered using c = 2.
Let the first two patterns be chosen for initializing the means, as mi = (1, 1)
and m2 = (2, 2). The remaining two objects are assigned to t/2 based on their
proximity to the closest mean. The cluster mean ni2 then gets updated as

2 + 3 + 4 2+8+8

The second iteration causes the assignment of Xi, X2 to cluster U\ and
X4 to cluster t/2, with convergence to cluster means

and
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6.3.1.3 Some variants Some of the variants of the conventional c-means al-
gorithm are^along the following lines.

1. Initial hierarchical clustering, followed by iterative relocation of patterns
to the clusters.

2. ISODATA [3] employs splitting and merging operations on clusters,
splitting if the sample variance in a cluster is more than a threshold
while merging when the distance between the centroids of a pair of clus-
ters is less than a threshold.

3. Instead of means, one could use c-modes (Section 6.6.3) to accommodate
symbolic objects. This involves using new dissimilarity measures, and a
frequency-based method to update modes of clusters.

4. Scalability of the algorithm is enhanced by retaining essential objects in
main memory, while compressing or summarizing elements belonging to
tight subclusters (using a clustering feature) and discarding redundant
data. Hence large data are modeled only by the clustering feature and
the retained objects in main memory.

6.3.1.4 Partitioning Around Medoids (PAM) The algorithm uses the most
centrally located object in a cluster, the medoid, instead of the mean. Note
that a medoid, unlike a mean, is essentially an existing data object from the
cluster. It is closest to the corresponding mean. The basic steps are outlined
as follows:

• Arbitrarily choose c objects as the initial medoids or seed points.

• Assign each remaining data object (pattern) to the cluster for the closest
medoid.

• Replace each of the medoids by one of all the nonmedoids (causing the
greatest reduction in square error), as long as the quality of clustering
improves.

• Iterate until the criterion function converges.

For large N and c, the c-medoids [4] is computationally more costly than the
conventional c-means. Here the computational complexity is O((l + 0)c(N —
c)2), where /3 is the number of successful swaps (replacements). However, in
the presence of noise and outliers, c-medoids is found to be more robust. This
is because of the inherent robustness of medoids, as compared to means, with
respect to noise. It is invariant to translations and orthogonal transformations
of objects and is generally not influenced either by the order of presentation
of objects or by the initial choice of seed points.
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6.3.1.5 ExampleS: Let us compare the working of PAM to that of c-means
on the sample two-dimensional clustering problem. At the end of the first
iteration, the cluster medoids are computed as mi = (1,1) and m? = (3,8)
[closest to the mean (3,6)].

6.3.1.6 Model-based clustering These methods aim to optimize the match
between the given data and some mathematical model. Here the data are of-
ten assumed to be generated from c probability distributions, typically Gaus-
sian or Normal around the cluster centers. This can also be termed as the
probabilistic version of c-means clustering. One needs, however, to find the
distribution parameters.

Expectation Maximization (EM) [15] is a popular iterative refinement al-
gorithm that belongs to the category of model-based clustering. It differs
from the conventional c-means algorithm in that each pattern point belongs
to a cluster according to some weight (probability of membership). In other
words, there are no strict boundaries between clusters. New means are com-
puted based on weighted measures. It provides a statistical model of the data
and is capable of handling the associated uncertainties. The algorithm can be
characterized as follows:

• Initialize c cluster centers.

• Iterate between the two steps.

— Expectation step: Assign each data point Xj to the cluster Uk with
probability

T>(Ve-jT\ nfrr\Y\ (R .P(Xi e Uk) = p(Uk\Xi) = - TTTT - , (6-10)

where p(Xi\Uk) = N(rrik,Ek(Xi)) follows the Normal distribution
around mean m^ with expectation Ek-

— Maximization step: Estimate model parameters

j e Uk)

In practice the algorithm converges fast, but may not reach the global optima.
Convergence is guaranteed for certain forms of optimization functions. The
computational complexity is O(c * N * n * £), where n is the number of input
features.

6.3.2 Hierarchical clustering

This method creates hierarchical nested partitions of the dataset, using a tree-
structured dendogram and some termination criterion. A matrix of similarity
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Step 4

Step 0

Fig. 6.1 A dendogram for hierarchical clustering.

or dissimilarity is provided between every pattern pair. The decomposition
of the dendogram can be bottom-up, starting from individual data objects
at the leaves as separate clusters and agglomeratively progressing upwards by
merging the closest objects (or groups) into clusters. The top-down strategy,
on the other hand, proceeds from a single cluster at the root and involves divi-
sive splits while progressing down to the leaves. The merge or split decisions,
if not properly made, may lead to low-quality clusters. Typically, the agglom-
erative strategy is more commonly used. However, in case of large databases,
this method is not very practical since it scales at least quadratically with the
number of data objects, that is, O(N2).

In agglomerative hierarchical clustering, the dendrogram shows how the
clusters are merged hierarchically. A clustering of the data objects at any
stage is obtained by cutting the dendrogram at the desired level, whereby
each connected component in the tree corresponds to a cluster.

6.3.2.1 Example 4: Let there be five data objects u, v, x, y, z. The den-
dogram of a hierarchical clustering, involving these objects, is depicted in
Fig. 6.1. The merging of clusters proceeds in a sequence xy, vz, uxy, uvxyz
of four steps. The splitting for the divisive method would follow the reverse
sequence. Although this method does not require the number of clusters c to
be prespecified, it needs a termination condition.

6.3.2.2 Distance measure Generally, the distance matrix is used as the clus-
tering criterion. The algorithm repeatedly merges closest clusters until the
number of clusters becomes c. The distance involved can be either of the
following:

• dmean(Ui, Uj) = ||nii — m.j\\ in the centroid approach, preferring break
of large, nonhyperspherical clusters.
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• dmin(Ui, Uj) = minxet/i.x'et/j ||X - X'|| in the minimum spanning tree
approach, which is sensitive to outliers and slight change in position.

Analogically, there can be daverage(Ui,Uj) and dmax(Ui,Uj).
The merging can follow the single linkage strategy, which combines two

clusters such that the minimum distance between two points X, X' from two
different clusters C/i, Uj is the least. The disadvantage includes confusion
created by overlapping objects. Complete linkage, on the other hand, merges
two clusters £/,, Uj when all points in one cluster are "close" to all points
in the other. This method is, however, sensitive to outliers. Several other
hierarchical merging strategies are reported in the literature [1].

6.3.3 Leader clustering

This is another approach that is found to be useful in data mining. The
leader clustering algorithm [2] chooses a leader as a representative (center)
of a cluster, such that it is also its member. The algorithm depends on a
threshold value to determine whether an object is similar (close) enough to
the leader in order to lie in the same partition. If the threshold (or tolerance)
is large, then more objects are grouped into less numbers of clusters, and vice
versa. The main steps of the leader clustering algorithm are outlined below.

1. Initialize threshold 9; initialize the first cluster center mi by the first
pattern. This is a leader.

2. for each of the remaining patterns X repeat steps 3-6.

3. Find nearest cluster t/j.

4. if distance ||X - nij|| < 0 then go to step 5 else go to step 6.

5. Update cluster center nii.

6. Generate new cluster center (leader).

The algorithm involves a single database scan, and it is required to store
only the leaders (or cluster centers). It is incremental and robust to outliers,
but is dependent on the order of pattern presentation. Moreover, one does
not need to prespecify the number of clusters c. The algorithm is found to be
suitable for use in large data.

6.4 SCALABLE CLUSTERING ALGORITHMS

Scalable algorithms were designed mainly by the Database community for
working on very large datasets. Here the time and space complexities of the
algorithms are of utmost concern. The number of database scans required is a
good indicator of the algorithm's feasibility. Often feature extraction becomes



238 CLUSTERING IN DATA MINING

useful for visualization. One could proceed by using an incremental (on-line)
clustering that generates cluster representatives in a single database scan. A
divide-and-conquer strategy may be applied by clustering a part of the data
at a time in the main memory, generating their representatives, and finally
merging these for all blocks of the data.

Some of the popular scalable algorithms include CLARA and CLARANS
(Partitional), DBSCAN (Density-based), BIRCH (Hierarchical or Leader),
CLIQUE (Grid-based), and CURE (Hierarchical). They are described below
in this section.

6.4.1 Clustering large applications

This encompasses partitional algorithms like CLARA [4] and CLARANS [5].

6.4.1.1 Clustering LARge Applications (CLARA) Here PAM is used to choose
medoids from multiple random samples of data, returning the best clustering
as the output. The computational complexity is O(cs2 + c(N — c)) for a
sample size s. Note that CLARA [4] considers selected sample datasets for
the medoids, while conventionally PAM searches for the best c medoids from
the entire data. However, CLARA cannot find the best clustering if any
sampled medoid is not among the best c medoids. This is the trade-off for
efficiency. Moreover, if s is not large enough, the effectiveness is lower; and if
s is too large, the efficiency is not good.

6.4.1.2 Clustering Large Applications based on RANdomized Search (CLARANS)
Unlike CLARA that is confined to a fixed sample initially chosen, CLARANS
[5] draws a sample with some randomness at each stage of the search. Each
cluster is represented by a medoid. Multiple scans of the database are required
by the algorithm. Here the clustering process searches through a graph, where
each node is represented by a set of c medoids. Two nodes are termed as
neighbors if they only differ by one medoid. Hence each node has c * (N — c)
neighbors.

The main steps are as follows:

• Initially, a node of c medoids is chosen randomly.

• Replace one of the c medoids at random, by selecting a neighbor node
randomly.

• Assign data objects (pattern points) to the cluster with the closest
medoid, by calculating average distance for this node; this requires one
scan of the database.

• if the criterion function does not improve then revert back to the old
medoid (node); else set the current node to be the neighbor node.

• repeat for a fixed number of times.
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Fig. 6.2 Concept of density-reachable points.

CLARANS has been experimentally shown to be more effective than PAM
and CLARA. It enables the detection of outliers. The computational com-
plexity is O(N2). However the clustering quality is dependent on the sampling
method used, and for large N the quality cannot be guaranteed.

6.4.2 Density-based clustering

This method clusters based on a local criterion such as density-connected
points. The major features of the clustering include the abilities to (i) discover
clusters of arbitrary shape and (ii) handle noise. The algorithm requires just
one scan through the database. However, density parameters are needed for
the termination condition. Some of the interesting studies in this direction
are DBSCAN [16], OPTICS [17], DENCLUE [18], and CLIQUE [19].

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
[16] discovers clusters of arbitrary shape in spatial databases in the presence of
noise. The clusters are regarded as dense regions of objects in the data space,
separated by regions of low density or noise. The objective is to determine
the maximal set of density-connected points. The user is required to specify
two parameters to define the minimum density. These are the c-neighborhood
(maximum radius) of an object and the minimum number of objects MinPts
within this. Let MinPts = 5 and e = 1 centimeter. Consider Fig. 6.2. A
point Xj is directly density-reachable from a point Xj with respect to e and
MinPts, if

1. Xi belongs to AT£(Xj), that is, d(Xj,Xj) < e, where Ne is called a
neighborhood function and JVe(Xj) contains the points belonging to the
neighborhood of Xj, and

2. core point condition |7Ve(Xj)| > MinPts holds.

A point Xj is density-reachable from a point Xj with respect to e and
MinPts if there is a chain of points Xi, . . . ,X^/, Xi = Xj, X/// = X,
such that Xfc+i is directly density-reachable from X*. A point X» is density-
connected to a point Xj with respect to e and MinPts if there is a point X*
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Fig. 6.3 Concept of density-connected points.

such that both X» and X5 are density-reachable from
and MinPts. This is depicted in Fig. 6.3.

The algorithm is outlined as follows:

with respect to e

• Arbitrarily select a point X*.

• Retrieve all points density-reachable from
MinPts.

• if Xi is a core point then a cluster is formed.

j with respect to £ and

• if Xj is a border point then no points are density-reachable from X{
and DBSCAN visits the next data point of the database.

• repeat the process until all the data objects (pattern points) have been
processed.

The computational complexity of the algorithm is O(NlogN). Using spatial
access methods, DBSCAN is found to be efficient even for very large spatial
databases. A generalized version of the algorithm has been recently developed
[20] to cluster point objects as well as spatially extended objects.

A parallel version of DBSCAN, called PDBSCAN, has also been reported
[21]. The main program of PDBSCAN, the master, starts a clustering slave
on each available computer in the network and distributes the whole dataset
into partitions onto the slaves. Every slave concurrently clusters only its local
data. The basic steps of the algorithm are as follows:

1. Divide the database DB into c partitions Si, 52, . . . , Sc, such that DB =
Ui=i ^i anci Si D Sj = $, for i ^ j. The partition Si is distributed on
slave computer Cj, where i = 1, 2, . . . , c.

2. Process the c partitions concurrently using DBSCAN on the available
computers Ci, Ci, . . . , Cc.

3. Merge the clustering results obtained from the partitions Si, i = 1, 2, . . . , c,
into a clustering result for DB.

Since the run-time of DBSCAN only depends on the size of the input data, the
partitions should be almost of equal size if we assume all computers to have
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the same processing performance. Otherwise, the data may be distributed on
computers according to their efficiency. In order to minimize communication
costs, the nearby objects need to be organized on the same computer.

6.4.3 Hierarchical clustering

A major weakness of agglomerative clustering methods is that they do not
scale well, the time complexity being at least O(N2) for N data objects.
Moreover, they can never undo what was done in a previous step. Hence
there have been integration of hierarchical with distance-based clustering,
for suitably handling large datasets. These include (i) BIRCH [22], which
uses a tree structure to store clustering features, and incrementally adjusts
the quality of subclusters; (ii) CURE [23], which selects well-scattered points
from the cluster and then shrinks them towards the center of the cluster by a
specified fraction; and (iii) CHAMELEON [24], which performs hierarchical
clustering using dynamic modeling.

6.4.3.1 Balanced Iterative Reducing and Clustering Using Hierarchies (BIRCH)
The algorithm [22] pre-clusters data points using a clustering feature tree
(CF-tree). A CF-tree is height-balanced, storing the clustering features (CF)
(summarized or condensed representations) for the application of a hierarchi-
cal clustering. The clustering feature is defined as

CF=(N,ls,ss),

where Is is the linear sum and ss is the square sum of TV data points in a
cluster or leaf.

The basic steps of the algorithm are as follows:
for each point

1. The CF-tree is traversed to find the closest cluster.

2. if the cluster is within a threshold then the point is absorbed into the
cluster. The corresponding CF representation is updated.

3. Otherwise, the point starts a new cluster with its own CF representation
(involving insertion and/or node split).

BIRCH requires only a single scan of the data, with the computational
complexity being O(N). The rebuilding process of the CF-tree is similar to
insertion and node split of B+ trees. The algorithm is linearly scalable for
large data and is capable of handling noise. The cluster summaries stored
in the CF-tree are given to the hierarchical clustering algorithm for further
processing. BIRCH can also be viewed as an extension of the leader algorithm
(Section 6.3.3), since each point either is assigned to the cluster of the closest
CF or is used to form a new cluster.
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Fig. 6.4 A CF-tree.

However, it works for spherical clusters of uniform size and considers only
limited available memory. The weakness of the algorithm is that it handles
only numeric data and is sensitive to the order of the pattern point insertions.

6.4.3.2 Example 5: For example, let there be three points (3,4), (2,6), (4,5)
in a cluster. Then we have the clustering feature of the corresponding node
to be

CF = (3, (3+2+4,4+6+5), (32+22+42,42+62+52)) = (3, (9,15), (29,77)).

The non-leaf nodes store sums of the CFs of their children. The parameters
involved are the branching factor (maximum number of children per non-leaf
node) and the threshold (maximum diameter of cluster stored at leaf node).
Figure 6.4 depicts a CF-tree.

6.4.3.3 Clustering Using Representatives (CURE) Hierarchical clustering of
large data typically uses a small number of representatives to represent a clus-
ter. If it is centroid-based, then only one point is used. This involves too little
information and can result in hyperspherical clusters. In a representative-
object-based (minimum spanning tree) approach, on the other hand, one uses
every point to represent a cluster. This involves too much information and
can often be misleading.
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CURE [23] uses a random sampling of original objects. A partitioning
of the samples is made, followed by correct labeling. A small number of
scattered representative points k are chosen. These are distributed over the
cluster, such that each point in the cluster is close to one representative and the
distance between clusters is the smallest distance between the representatives.
This enables the capturing of the physical shape and geometry of the cluster.
Farthest point heuristic is used to scatter the points over the cluster, and this
is followed by shrinking it uniformly around its mean to dampen the effects
of outliers. Availability of more than one representative point per cluster
enables handling of nonspherical shapes. The algorithm is scalable for large
databases, with a computational complexity of O(N).

6.4.4 Grid-based methods

Grid-based clustering quantizes the pattern space into a finite number of cells,
which form a multiresolution grid structure on which the operations are per-
formed. These algorithms typically involve fast processing time since they
are dependent only on the number of cells in each dimension of the quantized
space and are typically independent of the number of actual data objects.
This category of clustering algorithms encompasses STING [25] and CLIQUE
[19].

6.4.4.1 Statistical Information Grid-based method (STING) The algorithm
STING [25] divides the spatial area into rectangular cells using hierarchi-
cal structure, storing the statistical parameters of each numeric feature of the
objects (like maximum, minimum, mean, etc.) within the cells. There are
usually several levels of rectangular cells corresponding to different levels of
resolution, each cell at a higher level being partitioned to form a number of
cells at the next lower level in a top-down approach. The complexity of cluster
generation is O(N), while the complexity of response time of a query is O(g),
where g « N is the number of grid cells at the lowest level.

The quality of clustering depends on the granularity at the lowest level of
the grid structure: A finer granularity leads to an increased processing cost.
The spatial relationship between neighboring cells at a particular level is not,
however, considered in the hierarchy. This results in an isothetic shape of
resulting clusters, with only horizontal and vertical cluster boundaries, such
that no diagonal boundary can be detected.

6.4.4.2 Clustering In QUEst (CLIQUE) The algorithm CLIQUE [19] inte-
grates density-based and grid-based clustering methods. It is scalable to
high-dimensional data in large databases. The algorithm is insensitive to the
order of input tuples and does not presume any data distribution. However,
accuracy may be degraded at the expense of its simplicity.

The algorithm finds clusters in all (nonoverlapping, rectangular) subspaces
of the original pattern space. A unit in n-dimensions is defined as an inter-
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section of one interval from each dimension. A cluster is expressed as a set of
connected dense units in n-dimensions. It is assumed that if an n-dimensional
unit is dense, then so are its projections in the (n—l)-dimensional space. An A
priori-like algorithm (described in Section 7.2.1) is used to generate candidate
n-dimensional dense units. This enables generation of a minimal description
for each of the clusters. In other words, it determines the maximal region that
covers the clusters of connected dense units, followed by a minimal cover for
each cluster.

6.4.5 Other variants

Recent research indicates that the concepts of proximity or clustering may not
be meaningful in high dimensional data, mainly due to their inherent spar-
sity problem. A generalized projected clustering method [26] is designed to
circumvent this problem by constructing clusters in arbitrarily aligned sub-
spaces of lower dimensionality. The arbitrarily ORiented projected CLUSter
generation (ORCLUS) technique searches for hidden subspaces with clusters
which are created by inter-attribute correlations. The discovery of such corre-
lations lead to projections which are not parallel to the original axis system.
Extended cluster feature vectors are used to make the algorithm scalable for
very large databases.

6.5 SOFT COMPUTING-BASED APPROACHES

In this section we concentrate on clustering, using different soft computing
tools. These encompass fuzzy sets, neural networks, wavelets, rough sets,
and evolutionary algorithms, the basics of which have been described in Sec-
tion 2.2.

6.5.1 Fuzzy sets

Information granules can be viewed as collections of objects (patterns) drawn
together by the criteria of indistinguishability, similarity or functionality, as in
discretization or fuzzy partitioning. Fuzzy sets help in the semantics attach-
ment to these granules (or clusters) of data. They also enable the determina-
tion and description of meaningful associations between the granules. In this
section we describe some fuzzy clustering algorithms used for data mining.

6.5.1.1 Fuzzy c-means (FCM) This is a fuzzification of the c-means algo-
rithm, proposed by Bezdek [27]. It partitions a set of N patterns {Xfc} into
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c clusters by minimizing the objective function

N c

where 1 < ra' < oo is the fuzzifier, m, is the ith cluster center, u.ik € [0, 1] is
the membership of the kth pattern to it, and ||.|| is the distance norm, such
that

v^ (n ^'Y
= E^itot) xt

E£.,(«*)-'
and

*k = - - - — , (6-14)

Vi, with dik = ||Xfc - m^ll2 , subject to £^=1 u.ik — 1, Vfc, and £f=1 ^ifc > °>
Vt. The algorithm proceeds as follows.

1. Pick the initial means mi5 i = 1, . . . , c. Choose values for fuzzifier m'
and threshold e. Set the iteration counter t = 1.

2. repeat steps 3 and 4, by incrementing t, until \Hik(t) — fak(t — 1)1 > t.

3. Compute //it by Eq. (6.14) for c clusters and N data objects.

4. Update means mi by Eq. (6.13).

Note that for p,ik € [0,1] the objective function of Eq. (6.12) boils down to
the hard c-means case, whereby a winner-take-all strategy is applied in place
of membership values in Eq. (6.9).

6.5.1.2 Context-based clustering The conditional fuzzy c-means algorithm
[28] uses a context, while performing fuzzy clustering. The aim is to determine
the structure in a data set {X^} for a given context or domain knowledge
which is represented by a fuzzy set B defined over j/fc, that is, B(yk). This
introduces some focus and granularity in the search. It consists of a constraint-
based optimization of the objective function of Eq. (6.12), such that mi is
given by Eq. (6.13) but Eq. (6.14) is modified to

_. (6.15)
vc
2^j=l

6.5.1.3 Fuzzy c-medoids This is a fuzzification of the c-medoids algorithm
and is outlined as follows [29]:

1. Pick the initial medoids mi, i = 1,..., c.
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2. repeat steps 3 and 4 until convergence.

3. Compute Hik for i = 1,..., c and k = 1,..., N.

4. Compute new medoids

mi = X9,

where
N

q = arg mm. £(A«ifc)m'||Xj -Xfc||
2 (6.16)

1<3<N f-~

refers to that j for which the minimum value of the expression is ob-
tained.

Note that this boils down to the hard c-medoids with HM = 1, if i = q, and
fj,ik = 0 otherwise.

6.5.1.4 Granular clustering The granular clustering algorithm [30] organizes
findings about data in the form of a collection of information granules, called
hyperboxes. A compatibility measure guides the construction (growth) of
the clusters. Indices like volume, compatibility measure, inclusion, overlap,
normalized length, and sparsity are developed to describe the hyperboxes and
express the relationships between such information granules. The family of the
information granules result in a granular signature of the data. Abstraction is
achieved through condensation of original data elements into granules, whose
location and granularity reflects the essence of the structure of data. The
basic steps of the algorithm consist of

• finding the two closest information granules to build a new granule em-
bracing them, thereby condensing the data while reducing the dataset;

• repeating the first step until enough data condensation has been ac-
complished, as determined by a terminating criterion or a validation
mechanism.

The indices sparsity and overlap are found to be useful in understanding the
relevance of the variables, particularly their discriminatory abilities.

6.5.2 Neural networks

Neural network models based on variations of the self-organizing map (SOM)
[31] are mainly used for clustering large datasets. The SOM is depicted in
Fig. 2.4. It also results in good visualization of the results. The Adaptive
Resonance Theory (ART) network [32] can also be viewed as a neural imple-
mentation of leader clustering (described in Section 6.3.3).
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6.5.2.1 Construction of large SOM This was designed by Kohonen et al.
[33]. The models of the larger map are initialized using the smaller ones,
while pointers are initialized from the data to the models. The main steps of
the algorithm are as follows:

• Initialize models of a very small SOM.

• Teach this small SOM.

• repeat until the desired map size is obtained.

The larger map can be fine-tuned with a parallel batch-map algorithm, which
is typically used for faster computation. Let us consider Eq. (2.23). Assuming
that the convergence to some ordered state is true, the expectation values of
nii(t + 1) and nii(t) for t — > oo become equal. Hence, in the stationary state,
one has

^{a(t)[X(t)-mi(t)]} = 0, Vi,

where Et{.} is the expectation value over the index of regression t. For a finite
batch of X(t), we have

£.q(t)X(t)
mi = £,«.<«) ' (<U7)

Consider the Voronoi set Vi = {X| ||X — mj|| is minimum} such that n^ = \Vi\
is the number of samples of X(£) falling into Vi . Then the batch-map algorithm
is outlined as follows:

1. Initialize the centers m*, Vi.

2. for a finite set of samples X(t), compute a step of vector quantization

, Vi. (6.18)

3. Carry out one smoothing step

Y\. n,aX,
' J Vi, (6.19)

where a is regarded as time invariant for simplicity.

4. repeat steps 2 and 3 until m, becomes stationary.

The parallelization of the batch-map algorithm is possible due to the localized
nature of the search for the winner. Here the data are distributed into several
processors, and each executes the batch-map algorithm in parallel.

The algorithm has been applied to a large document database of patent
abstracts [33] containing classes of 21 subsections, with 68,40,568 documents,
and an initial dimension of 7,33,179 (number of different words) that is reduced
to 500 using feature selection methods. The initial size of the SOM is 435.
This later grows to a final size involving 10,02,240 nodes. The classification
accuracy is found to be 64%.
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6.5.2.2 Clustering ofSOM This is a two-level approach described in Ref. [34].
The SOM is used to produce prototypes, which are then clustered using ag-
glomerative and partitive methods. It is reported to have better performance
than direct clustering, by resulting in a reduction in the computation time.

6.5.2.3 Dynamic self-organizing maps The dynamic self-organizing map (GSOM)
[35] grows the nodes of the network according to the need of resolution. A
spread factor is used to control the generation of maps with different dimen-
sionality for different regions of interest in the feature space. Initially, one
starts with a small map having a low spread factor. Hierarchical clustering is
then done to achieve finer resolution for interesting clusters.

6.5.3 Wavelets

WaveCluster [36] uses a hybridization of grid and density-based approaches
to cluster using wavelet transformation. The low-pass filter, inherent in the
transform, helps to remove the outliers. It is possible to identify clusters at
different levels of accuracy (i.e., fine or coarse) by using inultiresolution. This
implies that there are less clusters at a coarser resolution.

Multidimensional spatial data are considered as a multidimensional sig-
nal, and wavelet transform is applied to convert it to a number of frequency
subbands. Convolution, with an appropriate kernel function as shown in
Eqs. (3.11) and (3.12) as an example, results in a transformed space where
the natural clusters become more distinguishable. A down sampling of the
signal by two is made by skipping alternate signal samples. This results in the
scales becoming coarser. However, at each scale the spatial relationships are
preserved because of the inherent space-time localization principles of Discrete
Wavelet Transform.

Consider Fig. 3.9. The high-frequency parts of the signal correspond to the
boundaries of the clusters. Here the subbands LHi, HLi, and HHi refer to
the horizontal, vertical, and diagonal features, respectively, constituting the
high-frequency edge or discontinuity information at level i (i = 1,2,3). The
low-frequency parts, with high amplitude, correspond to regions where the
patterns (objects) are concentrated. This involves the actual clusters, falling
in the average subband LLi. Details on the hierarchical decomposition of the
subbands has been provided in Section 3.8.3. The main steps of the algorithm
are as follows:

1. Quantize the feature space, and then assign objects to the units.

2. Apply wavelet transform on the feature space.

3. Find the connected components (clusters) in the (average) subband of
the transformed feature space, at different levels.

4. Assign labels to the units.
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5. Make the lookup table (map units in the transformed space to the orig-
inal feature space).

6. Map the objects to the clusters.

WaveCluster is fast, with a linear time complexity O(N), because of the
finite length of filters. It efficiently handles large, high-dimensional spatial
databases. Since the average subbands give approximations of the original
feature space at different scales, this helps the algorithm to find clusters at
different levels of details. It is possible to discover clusters with arbitrary
shapes and complex structures. Outliers can be successfully handled using
the inherent low-pass filter. No input parameter specifications are required,
and the algorithm is insensitive to the order of input pattern presentation.
WaveCluster is claimed to outperform the algorithms BIRCH, CLARANS,
and DBSCAN.

6.5.4 Rough sets

Here the c-means algorithm is extended by viewing each cluster as an interval
or rough set [37]. As mentioned in Section 2.2.6, a rough set Y is character-
ized by its lower and upper approximations BY and BY, respectively. This
permits overlaps between clusters. Adapting Eq. (6.9), the centroid m* of
cluster Ui is computed as

^* / sir. ^<-5,r._a,r.)^-*

Xfc
— otherwise,

(6.20)
where the parameters wiow and wup correspond to the relative importance
of the lower and upper approximations, respectively. Here \B_Ui\ indicates
the number of pattern points in the lower approximation of cluster C/j, and
\BUi — BUi\ is the number of elements in the rough boundary lying between
the two approximations.

Note that the expression boils down to Eq. (6.9) when the lower approx-
imation is equal to the upper approximation, implying an empty boundary
region. In order to determine whether an object X^ belongs to the upper or
lower approximation of clusters, one computes the difference in its distance
d(Xfc,nii) — d(Xfc,mj) from cluster centroid pairsjn* and mj. If this is less
than some threshold, then X& 6 BUi and X& 6 BUj and X& cannot be a
member of any lower approximation. Otherwise, X& e BUi such that dis-
tance d(Xfc, nij) is minimum over the c clusters. A major disadvantage of this
algorithm is the involvement of too many user-defined parameters.
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6.5.5 Evolutionary algorithms

Evolutionary algorithms have been applied for optimally selecting the initial
seed points (centroids) in c-means clustering [2]. Each solution string (chro-
mosome) represents a valid c-partition of the N patterns. Here the length of
the string is c * n, where n is the dimensionality of the patterns. A partition
may also be encoded as a string of length N where the zth element denotes
the cluster number of pattern X,. The squared error value associated with
a solution is translated into its fitness value, with a smaller error implying
a larger fitness. The evolutionary operators selection, crossover, and muta-
tion are applied to generate successive populations of solutions, until some
termination criterion is satisfied. Selection ensures that highly fit individuals
participate in the evolution with a higher probability. Crossover and mutation
help in exploring the search space randomly.

Simulated Annealing [38], which updates a solution stochastically to permit
its escape from local minimum, and Tabu Search [39], which searches in the
vicinity of the current solution by storing possible solution vectors in a list
while exploring the best solution found so far, have also been employed for
determining optimal partitions.

Genetic algorithms (GA) have also been used for medoids-based clustering
[2]. Here each chromosome consists of c parameters corresponding to the c
medoids, with the parameter values corresponding to their record IDs in the
database. The strings are not binary, as in conventional GAs (Section 2.2.5),
but consist of integer values lying between 1 and N where N is the total
number of objects in the dataset. The fitness of each individual is inversely
proportional to the dissimilarity of the clusters. The selection procedure is
the same as that of the conventional GAs.

Random Respectful Recombination (RRR) crossover operator is applied.
Here the parameter values, which are common in both the parent individuals,
are transported to the offsprings. The remaining parameter values of the
offspring are chosen randomly from the rest of the parameter values of the
parents.

6.5.5.1 Example 6: For example, with c = 5 and N = 100 and parent
chromosomes 7 19 43 67 89 and 8 19 39 67 92, we find that the common values
are 19, 67. These constitute the first two values in case of both offsprings.
The remaining slots are randomly filled up with the values 8, 43, 89 and 89,
7, 39 from the parents, resulting in the children 19 67 | 8 43 89 and 19 67 | 89
739.

Mutation tries to replace the parameter value of a chromosome by another
object (record number) not already present in it. First a random (integer)
number in the range [1,..., N] is generated. If this is different from the
existing numbers in the current chromosomes, it replaces the old number by
this new one.
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6.5.5.2 Example 7: For example, a mutation on the 2nd gene of the parent 7
|19| 43 67 89 with the generation of a random number 34 produces an offspring
chromosome given by 7 |34| 43 67 89.

6.5.5.3 Procedure The c-medoids algorithm, using GAs, involves the follow-
ing steps.

1. Choose an initial population of c medoids.

2. Compute the dissimilarity (distance) of the clusters from the chromo-
somes.

3. Assign fitness values to the individuals, with more dissimilarity implying
less fitness.

4. Generate new population of medoids by performing selection, crossover
and mutation.

5. if termination criterion is satisfied then go to step 6 else go to step 2.

6. Return the best fit chromosome.

Clustering Large Applications based on Simulated Annealing (CLASA) ap-
plies simulated annealing to select better medoids [40]. Simulated annealing,
unlike GAs, stochastically anneals a single chromosome with the help of a
temperature parameter. A cooling schedule of the temperature is undertaken,
as the search space is explored for determining the optimum set of medoids.

6.6 CLUSTERING WITH CATEGORICAL ATTRIBUTES

Traditional algorithms, suited for numeric or quantitative features, do not
work well for categorical or nominal attributes. Viewing the feature space as
points with (0/1) values of attributes does not solve the problem. The Jaccard
coefficient of Eq. (6.3) is often used for handling binary values. However,
it becomes hard to reflect the properties of the neighborhood of the points
and the algorithms fail to capture the natural clustering of datasets. When
using a traditional algorithm, involving centroids, as the cluster size grows,
the number of attributes appearing in the mean goes up. Their values in
the mean also decrease in a ripple effect. Thus it becomes very difficult to
distinguish between two points.

Often one builds a weighted hyper-graph, with frequent itemsets involving
categorical attributes. A hyper-edge in this graph represents a frequent item.
The weight of the edge is the average of confidences of all association rules
generated from its itemset. This hyper-graph partitioning algorithm is used
to cluster items by minimizing the sum of weights of hyper-edges.

Some of the clustering algorithms, working on categorical attributes, in-
clude STIRR [41], ROCK [42], CACTUS [43], and c-modes [44].
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6.6.1 Sieving Through Iterated Relational Reinforcements (STIRR)

STIRR [41] is based on nonlinear dynamic systems. It seeks a similarity based
on co-occurrences of items in the same column. Each distinct value of each
column becomes a node. The algorithm assigns weight to each node (either
uniformly or randomly), such that the sum of all weights is one. An iterative
approach is followed for assigning and propagating weights on the categorical
values. However, it is difficult to analyze the stability of this method.

Table 6.3 Sample transactions set to demonstrate STIRR

Item
purchased

A
A
B
B
C
C

Intermediate
node

a
a
0
a
a
0

Transaction
ID
1
2
3
4
1
3

6.6.1.1 Example 8: Let us consider an example in Table 6.3, demonstrating
the relation between transactions of items purchased in a store, to illustrate
how STIRR works. Figure 6.5 depicts the resulting undirected graph linking
the items with the corresponding transactions. The intermediate nodes refer
to the association or relationship between the items and the transactions,
thereby defining possible clusters on the basis of similarity. The weights of the
items, clusters, and transactions are represented by WA,WB,WC', WaiWp', and
w\,W2,w$,W4; respectively. These are initialized randomly. The subsequent
weight update expression is given as WB = wa + w* + wp + 1̂ 3 or WB =
wa.W4 + WQ.WZ. Upon convergence, clusters of transactions get reinforced by
the larger weight values at the intermediate nodes.

6.6.2 Robust Hierarchical Clustering with Links (ROCK)

ROCK [42] uses the number of common neighbors between two data points
in order to measure their similarity. Here common neighbors refer to nodes
that differ from each other in only one item. As it uses a global knowledge
of the similarity of data points in order to measure distances, the decision on
which points to merge in a single cluster becomes very robust. It is basically
a hierarchical clustering for categorical attributes, suitable for analyzing (say)
market basket customers. A novel concept of cross-links is used for merging
clusters. A similarity function sim(Ti,7}) captures the closeness or intercon-
nectivity between transactions 7} and 7). A pair of patterns T, and Tj are
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Fig. 6.5 Example demonstrating STIRR.

termed neighbors if sim(Tj,Tj) > 0, where 0 is a user-specified threshold,
and link(Ti,Tj) determines their number of common neighbors. A goodness
measure is used to evaluate the clustering. Random sampling is employed for
scaling up to large datasets.

6.6.2.1 Example 9: Let us consider an example with two clusters of trans-
actions, at any point of time of the hierarchical clustering, involving items
< 1,2,3,4,5 > and < 1,2,6,7 >, respectively, for 9 = |. Let the individ-
ual transactions be expressed as two natural partitions consisting of {1, 2, 3}
{1,2,4} {1,2,5} {1,3,4} {1,3,5} {1,4,5} {2,3,4} {2,3,5} {2,4,5} {3,4,5}
and {1,2,6} {1,2,7} {1,6,7} {2,6,7}, respectively. We define

IT- nT-l

Here the transactions {1, 2, 6} and {1, 2, 7} are found to have five links (com-
mon neighbors, namely, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 6, 7}, {2, 6, 7}), validat-
ing their existence in the same cluster. On the other hand, transactions
{1,2,3} and {1,2,6} are seen to have three links only (namely, {1,2,4},
{1, 2, 5}, {1, 2, 7}), implying less similarity and hence their existence in differ-
ent clusters.

6.6.3 c-modes algorithm

An approach in Ref. [45] has used the c-means algorithm to cluster categor-
ical data. Here multiple category attributes are converted into binary form,
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with a 0/1 indicating the absence (or presence) of a category, and then the
binary attributes are treated as numeric in the c-means framework. However,
as mentioned earlier, this approach needs to handle a large number of bi-
nary attributes because the datasets often involve categorical attributes with
hundreds or thousands of categories. This inevitably increases both compu-
tational and space costs of the c-means algorithm when used for data mining.
The other drawback is that the cluster means., expressed as real values be-
tween 0 and 1, do not essentially indicate the characteristics of any of the
clusters.

The c-modes algorithm [44] is capable of handling categorical or nominal
attributes. It uses a partitional approach and proceeds along the lines of the
c-means. However, the cluster means are replaced with their modes. Note
that a mode is another measure of central tendency in a dataset, referring
to that pattern or object having the maximum frequency of occurrence in
a cluster. For example, the two modes of the set {(x,y), (x,z), (z,y), (y, z}}
are (x,y) and (2,2). New dissimilarity measures are used to deal with cat-
egorical objects. A frequency-based method is used to update the modes of
the clusters. A mixture of categorical and numerical data can be handled by
the c-prototypes method [44]. This has applications in real-world databases
involving mixed-type objects. As in the c-means, both these algorithms pro-
duce locally optimal solutions that are dependent on the initial modes and
the order of presentation of objects in the dataset.

The basic steps of the c-modes algorithm are outlined as follows:

1. Select c initial modes.

2. Allocate an object to the cluster whose mode is the nearest to it. Update
the mode of the cluster after each allocation.

3. After all objects have been allocated to clusters, retest the dissimilarity
of objects against the current modes. If an object is found such that its
nearest mode belongs to another cluster, reallocate the object to that
cluster and update the modes of both clusters.

4. repeat step 3 until no object has changed clusters after a full cycle test
of the whole dataset.

The major differences between CLARA (since PAM can use any dissim-
ilarity measures, it can cluster objects with categorical attributes) and the
c-prototypes algorithm include the following, (i) CLARA clusters based on
samples, whereas c-prototypes directly works on the whole large dataset. (ii)
CLARA optimizes its clustering result at the sample level, and hence may not
produce a good clustering if the sample is biased; whereas the c-prototypes
algorithm guarantees at least a locally optimal clustering, (iii) The efficiency
of CLARA depends on the sample size, while the c-prototypes algorithm has
no such restrictions.
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6.7 HIERARCHICAL SYMBOLIC CLUSTERING

Symbolic objects include linguistic, nominal, boolean, and interval-type of fea-
tures, along with quantitative attributes. Clustering in this domain involves
the use of symbolic dissimilarity between the objects. In this section we outline
conceptual clustering [12, 13] and a hierarchical symbolic clustering algorithm
[46, 47] with different validity indices for determining the optimal number of
meaningful clusters. The novelty of the method lies in transforming the dif-
ferent clustering validity indices, like Normalized Modified Hubert's statistic,
Davies-Bouldin index, and Dunn's index, from the quantitative domain to
the symbolic framework. The effectiveness of the algorithm is quantitatively
evaluated on real-life benchmark datasets.

6.7.1 Conceptual clustering

Conceptual clustering [12, 13] is based on Category Utility CU of a cluster
t/fc, defined as the average over the / clusters. It is expressed as

(6.21)
t

where

cuk = p(uk] * ( E E p(^ = ̂  i^)2 - E E p& = ̂  )
\ i j i j

Here P(Uk) is the a priori probability of cluster Uk, P(oi = V^) is the proba-
bility of feature a* taking on value V^-, and P(oi = 14, It/it) is the conditional
probability of a» = 14, in cluster Uk- This represents an increase in the number
of feature values that can be correctly guessed for cluster Uk(P(a>i = V^lt/*)2),
over the expected number of correct guesses, given that no class information
is available [P(ai = V^-)2]-

The objective is to generate maximally cohesive clusters (high intraclass
similarity) while achieving maximum separability (high interclass dissimilar-
ity) among the clusters hi a partition. Probabilistic measures, to evaluate the
goodness of the partitioning, are expressed as [13]

Mdk= (p("i = Vij\Uk)
2-P(ai = Vij)

2) (6.23)

and

Var(U(k), U(l}) = - E E (P(ai = vv\uk) ~ P(ai = VH\Uitf • (6-24)
TL

» 3

Here Mdk is the increase in predictability of an object Xd to cluster Uk.
Cohesion of a partition structure is measured as the sum of the Mdk values of
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all objects in the dataset, while Var(U(k], U(l)) is the variance of distribution
match between clusters Uk and t/j in a given partition. Distinctness of a
partition is taken as the average variance between clusters in that partition.
Another popular conceptual clustering algorithm is COBWEB [48], which
builds an incremental classification tree.

6.7.2 Agglomerative symbolic clustering

The agglomerative algorithm [46, 47] typically involves a repetition of the steps
(i) assignment of pattern vector X to a cluster, (ii) all intercluster distance
computation, and (iii) merging pairs of clusters which are closest to each
other, until there is only one cluster left. Like typical hierarchical methods,
the partitioning at any stage depends on the previously found clusters.

Let us now define two different measures for within-cluster and between-
cluster distances in the symbolic framework. Let {Xi, . . . , XCfc} be a set of
symbolic objects lying in a cluster Uk- Then the average distance within the
cluster Uk is expressed as

k = , m i
|Cfc|(|Cfc| -

(6-25)

where Xi, X,/ e Uk, i ^ i', \Ck\ is the number of samples in cluster Uk, and D
indicates the symbolic dissimilarity of Eq. (6.8). The between- cluster distance
is defined as

where X* e Uk, X., e f/j, such that k ^ I. We have used Sa and da in
our computations, in terms of the symbolic dissimilarity D of Eq. (6.8). The
algorithm is as follows.

1. Let the initial number of clusters be AT, with each cluster having a weight
(number of objects) of 1. Therefore X, e C/i, i = 1, . . . , N.

2. Compute the weighted dissimilarities between all pairs of clusters in the
dataset as

/ ir.i i r . i \°-5

da«(Ui, V,) = da(Ut, UJ , 77?' , • (6-27)
\\Ci\ -t- \Cj\/

Note that the weighting term on the r.h.s. of Eq. (6.27) yields a value
^50 for \d\ = \Cj\ = 100, while it results in v/0.5 for |ci| = \GJ\ = I
(singleton clusters). Hence the dissimilarity is highlighted for larger
clusters. However, for |cf| = 100, \Cj\ = 1, we have 100/101 c± 1,
naturally implying a higher dissimilarity than that for |c»| = \Cj\ = 1.
So there is a greater probability of merging a pair of smaller clusters as
compared to larger clusters.



HIERARCHICAL SYMBOLIC CLUSTERING 257

3. Determine the mutual pair (clusters) having the lowest average weighted
dissimilarity daw . by Eq. (6.27). Form a composite cluster Uk by
merging the individuals of this pair, such that \Ck\ = \Ci\ + \Cj\. Reduce
the number of clusters by 1.

4. repeat steps 2 and 3 until the number of clusters equals 1.

5. Compute cluster validity index Vt by Eqs. (6.29)-(6.32). Determine the
stage to, with clusters c = CQ, for c = 2, . . . , v/AT, at which Vt is optimum.
This indicates the optimal number of clusters.

6.7.3 Cluster validity indices

To select the best among different partitioning, each of these can be evaluated
using some validity index. Several validation methods have been proposed in
the literature [7] for quantitative data. These include Normalized Modified
Hubert's statistic, Davies-Bouldin index, and Dunn's index. Since the conven-
tional centroid-based representation is not feasible in the symbolic framework,
we modify these expressions using the average scatter Sa [Eq. (6.25)] within
a cluster and da [Eq. (6.26)] between clusters [46, 47]. The performance is
compared with that of the Cluster indicator [10].

6.7.3.1 Hubert's statistic Let X* be the zth object and L(i] = k if X* € Uk-
The Modified Hubert's statistic is a measure used for determining the optimal
number of clusters in the quantitative domain [7]. For a cluster structure in
the symbolic framework, it can be expressed in terms of symbolic dissimilarity
as

7V-1 N

r=£ ]T D(Xi5X,,-K(£/L(i),f/LO-)). (6.28)
i=l j=t+l

If Xt and Xj lie in two different clusters, da is computed using Eq. (6.26).
However, when they belong to the same cluster, da = 0. From this, we get
Normalized Modified Hubert's statistic f as

»_ l

"
Here

N-l N

N-l N

t=l =i
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and

A =
M

- N-l N

= — V V
M Z^ Z^

where M = ^ 2 *' is the total number of terms under the double summation.
The terms SD and Sda are the standard deviations of the entries of the matrices
D and da respectively, while s|> and s^o are the corresponding variances [7].
The optimal partitioning occurs at c = CQ for which A(AF) is minimum.
This corresponds to a sharp change in slope (also called knee) of the piece-
wise linear graph for Normalized modified Hubert's statistic, in case of well-
separated clusters.

6.7.3.2 Davies-Bouldin index The Davies-Bouldin index is a function of the
ratio of the sum of within-cluster distance to between-cluster separation. The
best clustering, for c = CQ, minimizes

fSa
< - 7-
\ da

a a
max < - 7-777 — TTT — > , (o.oO)

for 1 < k,l < c. Here the within-cluster distance is minimized and the
between-cluster separation is maximized. The index is expressed in the sym-
bolic framework, using Eqs. (6.25) and (6.26).

6.7.3.3 Dunn's index Like Davies-Bouldin index, Dunn's index is designed
to identify sets of clusters that are compact and well separated. We maximize

. f dg(Uk,Ul) \\
m < - > > , (6.31)
k \rnax,, Sa(Uj)j )'

mm mm
k

for 1 < j, k, I < c. Here also the symbolic intercluster separation is maximized,
while minimizing symbolic intracluster distances.

6.7.3.4 Cluster indicator The cluster indicator value at the £th iteration is
defined as

CIt = - r - , (6.32)

where

i) _
"1

This is maximized over different iterations for t = 2, . . . , N — 2. Note that
initially, at t = 0, there are N singletons. At t = 1, the pair of closest clusters
are merged, resulting in TV — 1 clusters. Therefore, at the tth iteration we
have N — t clusters.
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Fig. 6.6 Plot of Hubert's statistic for Zoo data.

6.7.4 Results

The symbolic clustering algorithm was implemented [46, 47] on benchmark
symbolic data, namely, Zoo, Auto Import, and Mushroom [49]. The results
were compared with that of conceptual clustering, and the measures Cohe-
siveness and Distinctness of Eqs. (6.23) and (6.24) were used for this purpose.

In this section we provide sample results for the Zoo data consisting of
100 instances of animals with 17 features and 7 output classes. The name
of the animal constitutes the first attribute. There are 15 boolean features
corresponding to the presence of hair, feathers, eggs, milk, backbone, fins, or
tail; and whether airborne, aquatic, predator, toothed, breathes, venomous,
domestic, catsize. The character attribute corresponds to the number of legs
lying in the set {0,2,4,5,6,8}.

The validity indices used, Cohesion and Distinctness values, the number of
elements in each cluster (in parentheses), and the individual elements accord-
ing to their sequential order of entry in the corresponding cluster are provided
in Table 6.4. The symbolic clustering algorithm provided four clusters for the
Zoo data with validity indices C7, Normalized Modified Hubert's statistic,
Davies-Bouldin, and Dunn's, while Conceptual clustering generated two clus-
ters (merging clusters 2, 3, and 4 into cluster 2 here). It is observed that the
resulting partitions in the symbolic clustering are semantically meaningful
and are very similar to those obtained by Kohonen's self-organizing feature
map [35]. A plot of Hubert's statistic for the data, in Fig. 6.6, shows a sharp
knee corresponding to four clusters. The Cohesion and Distinctness measures
indicate better partitioning for four clusters.
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Table 6.4 Symbolic clustering and evaluation of Zoo data

Index

ci,
Normalized
Modified
Hubert's,
Davies-
Bouldin,
and
Dunn's

Conceptual

Cohesion,
distinctness

458.43,
0.58

132.49,
0.50

Cluster

1(41)

2(21)

3(21)

4(17)

1(41)

2(59)

Animals

aardvark, bear, girl, boar, cheetah, leopard,
lion, raccoon, wolf, lynx, mongoose, polecat,
puma, mink, platypus, dolphin, porpoise, seal,
sealion, antelope, buffalo, deer, elephant, giraffe,
oryx, gorilla, wallaby, calf, goat, pony,
reindeer, pussycat, cavy, hamster, fruitbat,
vampire, squirrel, hare, vole, mole, opossum.
bass, catfish, piranha, chub, herring, carp,
haddock, seahorse, sole, dogfish, pike, tuna,
stingray, frog, toad, newt, tuatara, pit viper,
slowworm, scorpion, seasnake.
chicken, dove, parakeet, lark, pheasant, sparrow,
wren, flamingo, ostrich, tortoise, crow, hawk,
vulture, kiwi, rhea, penguin, duck, swan,
gull, skimmer, skua.
clam, seawasp, crab, starfish, crayfish, lobster,
octopus, flea, termite, slug, worm, gnat,
ladybird, housefly, moth, honeybee, wasp.
aardvark, bear, girl, boar, cheetah, leopard,
lion, raccoon, wolf, lynx, mongoose, polecat,
puma, mink, platypus, dolphin, porpoise, seal,
sealion, antelope, buffalo, deer, elephant, giraffe,
oryx, gorilla, wallaby, calf, goat, pony,
reindeer, pussycat, cavy, hamster, fruitbat,
vampire, squirrel, hare, vole, mole, opossum.
bass, catfish, piranha, chub, herring, carp,
haddock, seahorse, sole, dogfish, pike, tuna,
stingray, frog, toad, newt, tuatara, pitviper,
slowworm, scorpion, seasnake.
chicken, dove, parakeet, lark, pheasant, sparrow,
wren, flamingo, ostrich, tortoise, crow, hawk,
vulture, kiwi, rhea, penguin, duck, swan,
gull, skimmer, skua,
clam, seawasp, crab, starfish, crayfish, lobster,
octopus, flea, termite, slug, worm, gnat,
ladybird, housefly, moth, honeybee, wasp.
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6.8 CONCLUSIONS AND DISCUSSION

In this chapter we have described clustering from the viewpoint of mining both
homogeneous and heterogeneous data. Different distance measures have been
defined for symbolic objects involving quantitative, binary, nominal (categor-
ical) and ordinal attributes. Partitional and hierarchical methods, along with
some scalable versions of clustering algorithms have been discussed. Use of
soft computing-based approaches, involving fuzzy sets, neural networks, rough
sets, genetic algorithms, and wavelets, are highlighted. Finally, clustering of
symbolic objects has been outlined. Clustering has useful applications in data
mining, pattern recognition, image segmentation, and Web mining.

Segmentation is a process of partitioning an image space into nonover-
lapping meaningful homogeneous regions. The success of an image analysis
system depends on the quality of segmentation. Remote sensing image data,
containing observations from the Indian Remote Sensing (IRS) satellite for
the city of Kolkata, India, has been segmented using fuzzy clustering based
on thresholding [50]. The data contain images of four spectral bands and
consist of six categories, namely, clear water (ponds, fisheries), turbid water
(the river Ganga flowing through the city), concrete (buildings, roads, airport
tarmac), habitation (concrete structures of lower density), vegetation (crop,
forest areas), and open spaces (barren land, playgrounds). A rough-fuzzy hy-
bridization of the EM algorithm [51], employing pixel classification, has been
used to segment the multispectral satellite images into different landcover
types.

The importance of clustering to Web mining, specifically in the domains
of Web Content and Web Usage mining, make Web clustering an interesting
topic of research. This includes clustering of Web documents, snippets and
access logs. Usually the Web involves overlapping clusters. So a crisp usage
of metrics is better replaced by fuzzy sets that can reflect, in a more natural
manner, the degree of belongingness/membership to a cluster. A review of
robust methods used for fuzzy Web clustering is presented in Ref. [52]. A ro-
bust algorithm is one whose performance is minimally affected in the presence
of outliers. The algorithms considered include fuzzy c-means (FCM), fuzzy
trimmed c-prototype, fuzzy c-least medians, and relational fuzzy c-means clus-
tering, along with some techniques used to make them robust. These issues
are further elaborated in Section 9.5.

The importance of symbolic clustering in real-world data is all the more ev-
ident, considering the availability of large volumes of mixed-media data that
are distributed over the Internet. It enables efficient handling of heteroge-
neous data such as linguistic, nominal, boolean, interval, shape, color, etc.
Partitioning of such data demands the use of symbolic measures for deter-
mining the similarity and dissimilarity between objects. The validity indices,
expressed here in the symbolic framework, are generally found to provide
better partitioning as compared to Conceptual clustering.
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The determination of the optimal number of clusters is an open problem.
The number of meaningful clusters selected, however, depends on the appli-
cation domain. For example, if one desires plain clustering or segmentation,
then one should go for coarser granules. On the other hand, if the goal is data
condensation for data mining, then one should concentrate on finer granules
as representative points.
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7
Association Rules

7.1 INTRODUCTION

Rule mining constitutes another major function of data mining. Here the
relationship between attributes is expressed in the form of rules, thereby en-
hancing the understandability of the underlying information to users. As
explained in Section 1.10, rules can broadly be of three types, namely, associ-
ation rules, dependency rules and classification rules. In this chapter we dwell
on association rules.

Let us consider a database of customer transactions T, where each trans-
action is a set of items. The objective is to find all rules of the form X => Y,
which correlate the presence of one set of items X with another set of items
Y. An example of such a rule is

98% of people who purchase diapers and baby food also buy baby soap.

For this purpose, one needs to ensure that (i) support of X and Y are greater
than a user threshold s, and (ii) conditional probability (confidence) of Y
given X is greater than a user threshold c.

A rule must have some minimum user-specified Confidence. A rule

1 & 2 = » 3

is defined to have 90% confidence if when a customer bought items 1 and 2,
in 90% of those cases, the customer also bought item 3. A rule must also have
some minimum user-specified Support. This implies that the rule 1 & 2 => 3

267
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should hold in some minimum percentage of transactions, in order to have
business value.

There can be any number of items in the consequent and antecedent parts
of a rule. It is also possible to specify constraints on rules, such as finding
only those rules involving expensive imported products.

Sample applications of association rules include

• Market basket analysis.

• Attached mailing in direct marketing.

• Fraud detection for medical insurance and credit cards.

• Department store floor or shelf planning.

An association rule can generally be viewed as being defined over attributes
of a relation and has the form C\ => C-2, where C\ and C? are conjunctions
of conditions and each condition is either a* = Vi or ai 6 [/», U{] with Vi being
a value (for categoric or numeric) and Ui, li being upper and lower bound
values (for numeric) from the domain of the attribute a^. The support of the
rule C\ =£» Ci is the same as the support of the conjunction C\ A C-2, while its
confidence is the ratio of the supports of conditions C\ A C-2 and Ci.

The different types of association rules can be categorized as follows.

1. Boolean: Here the association is between presence or absence of items.

2. Quantitative: Here the attribute values are partitioned into intervals,
such as the age or income of an individual.

3. Categorical: Here an attribute is categorical, like the make of a car.

4. Single dimensional: A sample rule is of the form
buys(X, "computer") => buys(X, "financial-management-software"}.

5. Multidimensional: A sample rule is of the form
age(X, "30... 39") A income(X, "42K... 48AT")
=> buys (A", "high-resolution-TV").

6. Multilevel: This involves rules with attributes at different levels of ab-
straction in a concept hierarchy.

(a) Considering "laptop-computer" to be at a lower level in the concept
hierarchy, as compared to "computer," we have rules of the form
age(X, "30...39") =>• buys(X, "laptop-computer"} and
age(X, "30...39") => buys(X, "computer"), or

(b) when the attributes span across multiple hierarchies, involving con-
cepts "computer" and "printer", we can have a cross-level rule
involving "computer" and "b/w-printer" (at a lower level in the
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second hierarchy) of the form
"computer" =» b/w-printer".

In the following sections we provide an overview on the different kinds of
association rules and their mining, as reported in the literature. Section 7.2
deals with some efficient algorithms for mining association rules, using the
candidate generation and test methods. Section 7.3 gives some insight into
depth-first search methods for rule mining. The concept of interestingness of
rules is provided in Section 7.4. In Sections 7.5-7.8 we describe multilevel
rules, online generation of rules, generalized rules, and scalable mining of
rules, respectively. Section 7.9 deals with some other variants of association
rule mining. Fuzzy association rules are reviewed in Section 7.10. Finally,
Section 7.11 concludes the chapter.

7.2 CANDIDATE GENERATION AND TEST METHODS

In this section we describe the A priori algorithm [1,2] and some of its vari-
ants, including the partition algorithm [3].

7.2.1 A priori algorithm

This algorithm computes frequent itemsets from a transactions database over
multiple iterations. Each iteration involves (i) candidate generation and (ii)
candidate counting and selection. Utilizing the knowledge about infrequent
itemsets, obtained from previous iterations, the algorithm prunes a priori
those candidate itemsets that cannot become frequent. After discarding every
candidate itemset that has an infrequent subset, the algorithm enters the
candidate counting step.

Table 7.1 Sample transactions to demonstrate association rule mining

Transaction ID
1
2
3
4

Purchased items
{1, 2, 3}
{1,3}
{1,4}
{2, 5, 6}

7.2.1.1 Example 1: Let us consider an example in Table 7.1, depicting the
items purchased by customers in four transactions. For a minimum support
of 50% (here, two transactions) and a minimum confidence of 50%, we have
the following rules
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(i) 1 =» 3 with 50% support and 66% confidence;
(ii) 3 => 1 with 50% support and 100% confidence.

The objective is to generate confident rules, having at least the minimum
confidence. The problem decomposition proceeds as follows:

• Find all sets of items that have minimum support, typically using the
Apriori algorithm [1, 2]. This is the most expensive phase of the search,
and involves lots of research for reducing the complexity.

• Use the frequent itemsets to generate the desired rules. Given ra items
there can be potentially 2m frequent itemsets.

Consider Table 7.2. For the rule 1 =» 3, we have

Support = 5wpport({l,3» = 50%

and
„ ... Support({l,3}) _,
Confidence = -/*-—"' , = 66%.

Support({l})

Table 7.2 Computation of frequent itemsets

Frequent itemset

{1}
{2}
{3}

{1,3}

Support (%)
75
50
50
50

The A priori algorithm is outlined as follows. Let Fk be the set of frequent
itemsets of size fc, let Ck be the set of candidate itemsets of size fc, and let F\
be the set of large items. We start from k = 1.

1. for all items in frequent itemset Fk repeat steps 2-4.

2. Generate new candidates Ck+i from Fk-

3. for each transaction T in the database, increment the count of all can-
didates in <7fc+1 that are contained in T.

4. Generate frequent itemsets Fk+\ of size k from candidates in Ck+i with
minimum support.

The final solution is \Jk Fk.
A key observation is that every subset of a frequent itemset is also frequent.

This implies that a candidate itemset in Ck+i can be pruned if even one of
its subsets is not contained in Fk-
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Table 7.3 Example transactions database for frequent itemset generation

IVansaction ID
1
2
3
4

Purchased items
{1, 3, 4}
{2, 3, 5}
{1, 2, 3, 5}
{2,5}

Table 7.4 Stages of Apriori algorithm demonstrating frequent itemset generation

Ci
{1}
{2}
{3}
{4}
{5}

Count
2
3
3
1
3

Support (%)
50
75
75
25
75

Fi

{2}
{3}

{5}

C2

{2,3}
{2,5}
{3,5}

Count
2
3
2

Support (%)
50
75
50

F2

{2,5}

7.2.1.2 Example 2: Let us explain the A priori algorithm with an example
database of transactions provided in Table 7.3. Consider Table 7.4, with a
minimum Support > 50%. After the first scan of the database, we have the
candidate itemsets C\ along with their corresponding Supports, as
{1} : 50%, {2} : 75%, {3} : 75%, {4} : 25%, and {5} : 75%.
The frequent itemsets FI consist of {2}, {3}, and {5}, each with Support of
75%.

Now the candidate itemsets C2 are {2,3}, {2,5}, {3,5}, with Supports of
50%, 75%, 50%, respectively.

The corresponding frequent itemset FZ becomes {2, 5} with a Support of
75%.

The rules generated are

2 =J> 5 with Confidence = = 100% and

5 => 2 with Confidence = = 100%.

However, in this method, multiple passes have to be made over the database
for each different value of minimum support and confidence. This number
can be as large as the longest frequent itemset. For very large databases
of transactions, this may involve considerable input-output (I/O) and lead
to unacceptable response times for online queries. Moreover, the potential
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number of frequent itemsets is exponential to the number of different items,
although the actual number of frequent itemsets can be considerably smaller.

Constraints are sometimes specified to focus only on the interesting por-
tions of a database. An example could be to find the association rules where
the prices of items are at most 200 dollars (max < 200). Incorporating con-
straints can result in efficiency. The anti-monotonicity property ensures that
when an itemset violates the constraint, so does any of its supersets (say,
min > X or max < X}. The A priori algorithm uses this property for
pruning the rulebase.

7.2.2 Partition algorithm

The main characteristics of the partition algorithm [3] are given below.
»

• Logically divide the horizontal database into a number of nonoverlap-
ping partitions, which can be accommodated in main memory.

• Each partition is read, and locally frequent itemsets are generated.

• All locally frequent itemsets are merged, and a second pass is made
through all the partitions.

• Global counts of all chosen itemsets are obtained.

A key observation, here, is that a globally frequent itemset must be locally
frequent in at least one of the non-overlapping partitions. This implies that all
frequent itemsets are guaranteed to be found. It minimizes I/O by scanning
the database only twice. In the first pass, it generates the set of all potentially
or locally frequent itemsets, while in the second pass it counts their global
support. However, the Partition algorithm may enumerate too many false
positives (itemsets locally frequent in some partition but not globally frequent)
in the first pass. Moreover, if this local frequent set does not fit in main
memory then additional database scans are required.

7.2.3 Some extensions

There exist some other variants of the A priori algorithm. These include (i)
consideration that a high confidence may not essentially imply high correla-
tion, (ii) incorporation of correlations, and (iii) pruning of the large number
of mined rules.

The DHP algorithm [4] involves hashing in the framework of the A priori
algorithm. It tries to reduce the number of candidates by collecting approxi-
mate counts in the previous level. Here a fc-itemset is considered to be in Ck
only if it is hashed into a bucket satisfying the minimum support criterion.
However, like A priori, it requires as many database passes as the longest
itemset.
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The method in Refs. [5] and [6] finds all frequent itemsets using random
sampling. A negative border is indicative of infrequent itemsets, whose subsets
are all frequent. The major steps are as follows.

• Scan the database to count support for frequent itemsets, and for item-
sets in a negative border.

• If no itemset in the negative border is frequent, then no more passes
over the database is needed.

• Otherwise, scan the database to count support for candidate itemsets
generated from the negative border.

The negative border is useful in increasing the efficiency of generation of large
itemsets and in derivation of negative association rules.

Dynamic Itemset Counting [7] dynamically counts the support for all su-
persets of an itemset (with frequent subsets) if, during a pass, an itemset
becomes frequent. It counts candidates of varying lengths as the database
scan progresses and is thereby able to reduce the number of scans over the A
priori algorithm.

7.3 DEPTH-FIRST SEARCH METHODS

The A priori algorithm is a breadth-first search technique that exhaustively
evaluates all possible combinations of itemsets at a particular level. An ef-
ficient variation of this is a depth-first search algorithm Eclat [8], used for
association rule mining. A search tree is generated in terms of the itemsets
using depth-first traversal. This results in an efficient utilization of the mem-
ory and has applicability to the handling of large data.

Often the A priori algorithm needs to generate a huge number of candidate
sets. For example, in order to discover a frequent pattern of size 100, such
as {ai,.. .,aioo}, it needs to generate more than 2100 w 1030 candidates.
Moreover, it may need to repeatedly scan the database while checking a large
set of candidates using pattern matching.

The Frequent-Pattern growth (FP-growth) algorithm avoids this candidate
generation phase all together, by employing a divide-and-conquer strategy [9].
It compresses the database representing frequent (or representative) items into
a Frequent-Pattern tree (FP-tree), while retaining the itemset association in-
formation. The compressed database is divided into a set of conditional (or
projected) databases, each associated with one frequent item. Finally, each
compressed database is mined separately.

Example 3: Let us consider Tables 7.3 and 7.4 for describing the FP-growth
algorithm. In the first scan of the transactional database we obtain the list of
items, sorted hi descending order on their counts as

L = {(2,3), (3,3), (5,3), (1,2), (4,1)},
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root

Items
2

5

Count

3

3

Link

~ ~

(3,1)^
^•^

^
(5,1)

Fig. 7.1 An example FP-tree.

where the number following the comma indicates the count. Considering only
those items having minimum support of 3, for simplified understanding, we
have

I/= {(2,3), (3,3), (5,3)}.

The resultant FP-tree of Fig. 7.1 is constructed as follows. First the root node
is created. The database is scanned a second time, and the items in each
transaction are processed in the order given in U while creating a branch cor-
responding to each transaction. For example, the scan of the first transaction
{1,3,4} of Table 7.3 yields the item {3}, as only it has minimum support.
This leads to the leftmost branch of the tree with node (3,1), with item {3}
being linked to the root. The second transaction {2,3,5} is found to be in
proper order as L', and it generates a branch from the root with three nodes
(2,1), (3,1), and (5,1). The third transaction {1,2,3,5} yields the itemset
{2,3,5} according to L', and it shares the second branch of the tree. Hence
the counts along these three nodes are incremented by one along the entire
path, now resulting in nodes (2,2), (3,2), and (5,2). The fourth transaction
{2,5}, being again in order as I/, is used to generate the rightmost branch of
the tree with a common prefix for item {2}. Therefore, the nodes along this
path from the root now become (2,3) and (5,1).

Tree traversal is facilitated by constructing an item header table, as shown
in Fig. 7.1, so that each item points to its node(s) of occurrence in the tree
through a chain of dotted links. Now mining of frequent patterns in databases
reduces to recursively mining the FP-tree. The algorithm starts from the last
item in list I/, as an initial suffix pattern, and constructs its conditional pat-
tern base or sub-database consisting of the set of prefix paths in the FP-tree
co-occurring with it.

Example 4-' Here we demonstrate the tree traversal method for generating
frequent itemsets. Let us start from item {5}. Based on the node-link con-
nections from the root of Fig. 7.1, the two paths selected are {(2,3), (5,1)}
and {(2,3), (3,2), (5,2)}. We observe that the samples with a frequent item
{5} are {(2,2), (3,2), (5,2)} for transaction IDs 2, 3, and {(2,1), (5,1)} for
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transaction ID 4, from Table 7.3. The frequent patterns generated, observing
minimum support from both these patterns, are therefore {(2,3), (5,3)} or
simply the itemset {2,5}.

Analyzing item {3}, we obtain paths {(3,1)} and {(2,3), (3,2)} from the
root. However these lead to no frequent patterns. Hence the solution of the
FP-growth method is the set of frequent itemsets {2,5}.

Instead of finding long frequent patterns, the FP-growth method resorts to
searching recursively for shorter ones followed by a concatenation of the suffix.
The use of the least frequent item as a suffix serves to significantly reduce the
search costs. The FP-growth method is efficient and scalable for mining long
frequent patterns. It is found to be faster [9] than the Tree-projection algo-
rithm, which recursively projects a database into a tree of projected databases,
as well as the A priori algorithm.

7.4 INTERESTING RULES

Unlike accuracy, which involves evaluating the performance of a large number
of rules exhibiting typical behavior for a particular situation, interestingness
measures the deviation from prior expectation of the general information in-
herent in these prevalent rules. Mining's payoff is in extracting such surprising
phenomena that lie hidden in the data. The concept of surprisingness is ex-
plained from the information theoretic viewpoint in Section 3.2.1. Now let us
outline what makes a rule surprising. It

• does not match prior expectation and

• cannot be trivially derived from simpler rules.

It is evident that rules having very low interestingness values need not be
examined, as they are likely to contain well-known aspects about the domain.
So we need some kind of measure to evaluate this interestingness, which can
again be objective or subjective [10]. While objective measures categorize the
interestingness of a pattern in terms of its structure and the underlying data
used in the discovery process, the subjective measures additionally incorporate
the views of the person inspecting the pattern. These lead to the development
of parameters like unexpectedness and actionability. A rule is interesting to a
user if it is unexpected (or surprising) and if (s)he can act on the knowledge
provided by the rule to her/his advantage.

The different interestingness measures are provided below. Note that these
are in addition to the quantitative measures of Section 2.4.2, used for evalu-
ating the performance of rules.

1. Simplicity: This is desirable for human comprehension, as a more com-
plex rule structure implies that it is more difficult to interpret and is
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therefore less interesting. It is measured in terms of the rule length or
the number of decision tree nodes or leaves.

2. Certainty. This is the reliability (or accuracy) in classification rules. It
is measured as

.,„ ,,. no.-of-tuples-containing-both-X-and-Y
confidence(X =*¥) = J- y . , ^—. .

no. -of -tuples .containing-X
(7.1)

3. Utility. This is measured as

, ,^ ,,x no.-of-tuples-containing-both-X-and-Y .„ ^xsupport(X =>Y) = - r-?—, . (7.2)
total jno.-of-tuples

4. Novelty: This corresponds to patterns that contribute new information
or increased performance. It implies some sort of data exception, which
differs from what is expected based on a statistical model or user beliefs.

5. Interest: This also provides a measure of the new information provided,
and it can be viewed as an estimation of the increase in probability of Y
caused by the occurrence of X, that is, P(Y\X) — P(Y). It is expressed
as

-L/V v\ f j iv T^\ no. ,of-tuples-containing-Yinterest(X =>• Y) = confidence(X =>• Y) —-*- - —-—.
total-no, -of-tuples

(7.3)

7.5 MULTILEVEL RULES

Data can be generalized by replacing low-level concepts with their more gen-
eral high-level concepts from a concept hierarchy. When a rule involves at-
tributes from different levels in such a concept hierarchy, it is termed Multi-
level. A rule is typically said to be redundant if it does not offer any additional
information and is less general (namely, at a lower level).

Let us consider an example concept hierarchy of computer (support: 10%)
at level 1, followed by descendants laptop (support: 6%) and desktop (sup-
port: 4%) at the next lower level 2. There exist several approaches to mine
Multilevel rules. These are mentioned below.

• Uniform minimum support for all levels: The search avoids examining
itemsets containing any item whose ancestors do not have the minimum
support. For example, if the minimum support for the levels is 5%,
then only the association involving laptop can be considered at level 2.
However, if the minimum support threshold is set too high, it may miss
several meaningful associations occurring at lower abstraction levels.
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Moreover, if this threshold is too low, it may lead to the generation of
many uninteresting associations at higher abstraction levels.

• Reduced minimum support at lower levels: Now let the minimum support
at level 2 be reduced to (say) 3%. This overcomes the first problem
mentioned above, so that the association involving desktop also becomes
frequent at level 2.

• Level-by-level independent Each node is examined regardless of whether
or not its parent node is frequent. Here both concepts laptop and desktop
are examined.

• Level-cross filtering by single item: An item at the z'th level is examined
if and only if its parent at the (i — l)th level is frequent. This may
miss associations between low-level items that are frequent based on a
reduced minimum support, but whose ancestors do not satisfy (higher)
minimum support. For example, if the minimum support at levels 1 and
2 are set at 12% and 3% respectively, then the concepts at level 2 are
not examined here since the concept at level 1 (i.e., computer) is not
frequent.

• Controlled level-cross filtering by single item: Users may choose to lower
the level passage threshold at higher concept levels to allow descendants
of subfrequent items at lower levels to be examined. For example, if the
level passage threshold at level 1 is now set at 8%, then the descendants
of the subfrequent concept computer (support: 10%) can be involved for
determining associations.

• Level-cross filtering by k-itemset A fc-itemset at the ith level is exam-
ined, if and only if its parent fc-itemset at the (i — l)th level is frequent.
This restriction can lead to filtering out of many valuable patterns. Let
us now modify the above example to include the concept pair (A; = 2)
computer & printer (support: 7%) at level 1, followed by descendants
laptop & b/w printer (support: 1%), laptop & color printer (support:
2%), desktop & b/w printer (support: 1%), and desktop & color printer
(support: 3%) at level 2. If the minimum support at levels 1 and 2 are
now set at 5% and 2%, respectively, then all 2-itemsets at level 2 can
now be examined to determine associations.

7.6 ONLINE GENERATION OF RULES

It is often hard for a user to guess, a priori, how many rules might satisfy
a given level of support and confidence. In most cases, one finds that the
number of redundant rules is significantly larger than the number of essential
rules. To circumvent these problems, an online algorithm is described in
Ref. [11]. The data are preprocessed and stored such that a graph theoretic
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search algorithm, with complexity proportional to the size of the output, may
be applied for effectively handling repeated online queries. It is independent
of the size of the transactional (preprocessed) data. The algorithm is capable
of quickly discovering association rules, in compact form, from large itemsets
with specific items in the antecedent or consequent.

In most cases, the number of redundant rules is significantly larger than the
number of essential rules. This kind of redundancy arises when we consider
rules having more than one item in the consequent. For example, if the rule
X => YZ is true for a given minimum support and confidence, then rules
such as XY => Z, XZ =>• Y, X =$> Y, and X =* Z are said to be redundant.
Mining of nonredundant association rules helps significantly in the reduction
of irrelevant noise. The kinds of online queries that this system can support
are outlined below.

1. Find all association rules above a certain level of min-support and
min-confidence.

2. At a certain level of min-support and min-confidence, find all associ-
ation rules concerned with the set of items X.

3. Find the number of association rules or itemsets in any of the above two
cases.

4. Find the level of min-support at which exactly fc-itemsets exist contain-
ing the set of items Z.

5. For a particular level of min-confidence c, find the level of min-support
at which exactly k single-consequent rules exist involving the set of items
Z.

An itemset X is said to be adjacent to an itemset Y, if one of them can
be obtained from the other by adding a single item. An itemset X is called
the parent of itemset Y (descendant or child) if the latter can be generated
from the former by adding one item. The algorithm proceeds by forming an
adjacency lattice L, which is a directed acyclic graph. For each vertex v( J) in
L which is a descendant of v(/), support S(J) < S(I). The number of edges in
the adjacency lattice is equal to the sum of the number of items in the primary
itemsets. For a given itemset / (including the null set {}), the algorithm finds
all itemsets J such that v( J) is reachable from v(I) by a directed path in the
lattice L and satisfies S( J) > s, where s indicates minimum support.

The adjacency lattice, so generated from the transactions, is then traversed
to mine association rules.

7.7 GENERALIZED RULES

Items in a database are often stored as concept hierarchies. Often there exist
associations across these hierarchies, resulting in generalized association rules.
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Let us consider a hierarchy of clothes, categorized as outwear (consisting of
jackets and pants) and shirts. Let there be another hierarchy of footwear
grouped as shoes and hiking boots. In this case, a rule clothes => footwear
may hold even if the rule clothes =$• shoes does not hold (depending upon the
corresponding levels of confidence and support). Approaches to handle such
rules are provided in the literature [12, 13].

A graph-based approach [14] is used to discover primitive (conventional),
generalized, and multilevel association rules. In a concept hierarchy, the termi-
nal nodes are the database items while the nonterminal nodes are the general-
ized items. Here the database is scanned only once to construct an association
graph, which is then traversed to generate all large itemsets. The basic steps
of the algorithm are as follows.

• Numbering phase: Here all items are assigned an integer value.

• Large item generation: This consists of determining the items with sup-
port not less than a user specified minimum support.

• Association graph construction: This consists of determining the asso-
ciation between large items.

• Association pattern generation: This is done by traversing the associa-
tion graph.

• Association rule generation: Here one generates all generalized and mul-
tilevel rules.

Table 7.5 Transactions demonstrating Bit vector computation

Transaction ID
1
2
3
4

Itemset
CAD
ECB
ABCE
EB

The algorithm scans the database and computes a Bit vector for each item.
The length of the vector is equal to the number of transactions in the database.
If an item appears in the ith transaction, the ith bit of the corresponding bit
vector BVi is set to 1, else it is 0.

Example 5: Table 7.5 depicts a sample set of transactions of items to
demonstrate Bit vector generation. Let the minimum support be 50%, that
is, 2 transactions. The BVs for items A,B,C,E are (1010), (0111), (1110),
(0111), respectively. The support for itemset {* i , . . - ,« fc} is the number of
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ones in BV^ A ... A BVik . For every two large items z, j (i < j), if the number
of ones in BVi A BVj achieves the user-specified minimum support, then a
directed edge from item i to item j is created in the association graph. Con-
sidering itemset {i,j} to be a large 2-itemset, sample rules generated from
Table 7.5 are A =$• C (with support 2); B => C, E (with supports 2,3 respec-
tively); and C => E (with support 2).

However, the algorithm assumes that the bit vectors fit in main memory,
and thus scalability could be a problem for databases with millions of trans-
actions.

7.8 SCALABLE MINING OF RULES

The idea of scalable mining in large databases is important because the search
space is often exponential in the number of database attributes. Most current
approaches are iterative in nature, requiring multiple database scans. This
makes them very expensive. Use of sampling can be sensitive to data skew,
and this can adversely affect the performance of an algorithm. Moreover,
most existing approaches use very complicated data structures involving poor
locality and thereby incur additional space and computational overheads.

A scalable algorithm, described in Ref. [15], utilizes the structural proper-
ties of frequent itemsets to facilitate fast discovery. Efficient lattice traversal
techniques are presented to quickly identify all the long frequent itemsets and
their subsets (if required). The approach is insensitive to data skew, and the
simple intersection operations involved make it an attractive option for direct
implementation in distributed systems using SQL. Its main characteristics are
as follows.

• It uses a vertical transactions ID (TID)-list, associating each itemset
with the list of transactions in which it occurs. All frequent itemsets
are enumerated via TID-list intersections.

• The original search space (lattice) is decomposed into smaller sublat-
tices, which can be processed independently in the main memory. One
can use prefix-based and maximal-clique1-based partition for this pur-
pose.

• Bottom-up, top-down and efficient hybrid searches are used for enumer-
ating the frequent items within each sublattice.

• The algorithm requires only a few database scans, thereby minimizing
I/O costs. It also retains linear scalability in the number of transactions.

1A graph consists of a set of vertices and edges. A graph is complete if there is an edge
between all pairs of vertices. A complete subgraph of a graph is called a clique.
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• Some of the assertions made in the algorithm include the following.

— All subsets of a frequent itemset are frequent.

— The maximal frequent itemsets uniquely determine all frequent
itemsets.

— Two itemsets are in the same class if they share a common k length
prefix.

The algorithm is found to outperform several approaches like A priori and
Partition (described in Section 7.2).

7.9 OTHER VARIANTS

In this section we dwell on some variants like quantitative association rules,
temporal association rules, correlation rules, localized associations, and opti-
mized association rules.

7.9.1 Quantitative association rules

As mentioned earlier, a boolean association rule is an implication written as
X =>• Y among items (or attributes) X and Y. The support of the rule is s,
if s tuples contain both X and Y as attributes. The confidence of the rule
is c (c < 1, expressed as a percentage) if c of all tuples that contain X also
contain Y.

A more general form of such rules is the quantitative association rule [16].
A sample quantitative association rule is

10% of married people with age between 50 and 70 have at least 2 cars.

The algorithm involves discretizing the domains of quantitative attributes
into intervals, in order to reduce the domain into a categorical one. Here A
and B are vectors of intervals, each of which is in one of the attributes in X
and Y, respectively. The support of the rule is s, if s tuples fall in intervals of
A and B, when projected to attributes X and Y respectively. The confidence
of the rule is c, if c of all the tuples that fall in intervals in A also fall in
intervals in B.

7.9.2 Temporal association rules

Temporal rules can be used to describe the rich temporal character inherent
in the data. Consider a sample rule diaper =$• baby food, with a support of 5%
and confidence of 87%. The support of this rule may jump to 25% between
6 to 9 PM on weekdays. The problem is to determine how to find rules that
follow some interesting user-defined temporal patterns. The challenge is to
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design efficient algorithms that do much better than finding every rule in every
time unit. Approaches in this direction are provided in the literature [17, 18].

7.9.3 Correlation rules

Association rules, typically, do not capture correlations. For example, suppose
90% customers buy coffee, 25% buy tea, and 20% buy both tea and coffee.
The rule tea => coffee has a high support of 0.2 and confidence 0.8. But the
items {tea, coffee} are not correlated. The expected support of customers
buying both is 0.9 x 0.25 = 0.225.

In correlation rules, the correlation between the occurrences of X and Y is
expressed as

P(XUY) ._
(7A}

where a value < 1 indicates a negative correlation, = 1 signifies independence,
and > 1 implies a positive correlation between the items, and P(.) refers to
the corresponding probability.

Fast itemset counting has been used to find correlated events. This has
applications in (i) medicine, to find redundant tests, (ii) cross selling in re-
tail and (iii) banking. These rules help improve the predictive capability of
classifiers that assume attribute independence.

7.9.4 Localized associations

Aggarwal et al. [19] have designed an algorithm effective in discovering local-
ized associations, from individual segments, that expose a customer pattern
which is more specific than the aggregate behavior. Such personalized asso-
ciations are applicable to more useful target marketing. For example, those
transactions which are drawn from extremely cold geographical regions may
contain correlations corresponding to heavy winter apparel, whereas these
may not be present in the aggregate data because they are often not present
to a very high degree in the rest of the database. An attempt to find such
correlations, using global analysis by lowering the support, will result in find-
ing a large number of uninteresting and redundant "correlations" which are
created simply by chance throughout the dataset.

The CLustering for Association Discovery (CLASD) algorithm [19] can
also be used to segment categorical data. Concepts from both agglomerative
and partitional clustering are used in conjunction with random sampling, in
order to make it robust, practical, and scalable for very large databases. The
affinity A(i,j) between two items i and j is expressed as

sup({i}) + sup({j}) -
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where sup(X] denotes the aggregate support of a set of items X. The
similarity between a pair of transactions T = [ii,..., im} and T' = {j\,..., jn}
is defined as the average affinity of their items. Here

Sim(T, T') = ££i£%-iAft"J«). (7.6)
ra * n

The overall approach uses a set of cluster representatives or seeds to create
the partitions and is always larger than the final number of clusters c. In
each iteration, the closest pair of representatives are merged to reduce their
number by a factor a. Random sampling is performed on the database to
assign the transactions to seeds. The value of the sample size is also increased
by a factor a in each iteration. Thus later phases of the clustering benefit from
larger sample sizes, and robust computations are possible in later iterations.

7.9.5 Optimized association rules

Association rules are built from atomic conditions. For the atomic condition
a,i = Vi, if Vi is a value from the domain of attribute c^, the condition is
referred to as instantiated] else, if Vi is a variable, the condition is termed as
uninstantiated. Optimized association rules are permitted to contain unin-
stantiated attributes. The problem is to determine instantiations, such that
either the support or confidence of the rule is maximized. Optimized associ-
ation rules are generalized [20] by allowing the rules to contain disjunctions
over an arbitrary number of uninstantiated attributes, having either categor-
ical or numeric values. Useful information is extracted about seasonal and
local patterns involving multiple attributes. Pruning is incorporated using a
combination of depth-first search, branch and bound techniques, and a graph
search algorithm.

7.10 FUZZY ASSOCIATION RULES

Quantitative association rules, as mentioned in Section 7.9.1, require the spec-
ification of appropriate intervals along each attribute. However, these inter-
vals may often not be concise and meaningful enough for human experts to
discover nontrivial knowledge. Fuzzy sets can be used from this perspective
to represent intervals with non-sharp boundaries, thereby generating fuzzy
association rules (introduced in Section 2.3.3). Assignment of meaningful lin-
guistic terms to the fuzzy sets makes these rules more understandable. A
sample fuzzy association rule is

10% of married old people have at least several cars.

Algorithms for mining fuzzy association rules are provided in the litera-
ture [21]. Typically, an expert is required to provide the fuzzy sets for the



284 ASSOCIATION RULES

Feature 1

"0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Feature Value (KHz)

Fig. 7.2 Overlapping fuzzy sets.

quantitative attributes, along with their corresponding membership functions.
Sometimes these functions are also determined by clustering and subsequent
tuning. Pruning is another feature necessary to retain only the interesting
rules.

Fuzzy set concepts are integrated with the A priori algorithm (Section 7.2.1)
to mine interesting fuzzy association rules, using the Fuzzy Transaction Data
mining Algorithm (FTDA) [21]. Quantitative values in transactions are trans-
formed to natural and more understandable linguistic terms, which are then
filtered to generate fuzzy associations.

Let there be N transactions data each with ra attribute values, a set of
membership functions, and predefined minimum support s and confidence c.
The steps of the FTDA are outlined as follows.

1. Transform the quantitative value ay of each transaction tl,i = 1,.. .,N,
for each attribute a.j, j = 1,..., n, into a fuzzy set //yfc represented as

*L + !*32.+ | &»\
-h Rji Rji ) '

using the given membership functions. Here Rjk is the fcth linguistic
partition (e.g., low, medium, high, etc.) of attribute a,j, //yfc is the fuzzy
membership value for ay in region Rjk, and /(= |a.,-|) is the number of
fuzzy partitions used for a,j.
(Example: Consider Fig. 7.2. Let there be a quantitative input feature
(in KHz), denoted as a.,. The corresponding value of transaction tl

along this axis is given as ay. Using fuzzy sets, we split this axis into
I overlapping partitions of linguistic terms, say, low, medium, and high.
Let these partitions be represented as R^ for low, Rjz for medium,
and Rj3 for high, with centers rJ15 r,2, rj3, respectively. The three
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overlapping membership functions (drawn with solid lines) indicate low,
medium, and high regions of the feature axis, from left to right. Here we
use TT membership functions, as explained in Section 2.2.2.1. The overlap
between adjacent partitions is termed p, uniformly for each pair, along
the axis. A quantitative feature value a^ is hence mapped to a three-
dimensional vector [Lt>ij1,Hij2,p'ij3}, whose components (lying in [0,1])
refer to the membership value to the corresponding linguistic term (low
RJI, medium Rj2, or high Rj3). Note that the membership function at
each of the centers (r^, rj2, rj3) has a value of 1.)

2. Calculate the scalar cardinality of each attribute region Rjk in the trans-
action data as

N

count jk = ]T pijk . (7.7)

3. Find countm&x = maxj^ count jk, for j = 1, . . . ,n. Let Rf** be the
linguistic partition with count™** for attribute a,.

4. Check whether the count™** of each Rmax, j = 1, . . . , n, is larger than or
equal to the support s, and then put it in the set of frequent 1-itemsets
(Fi). Therefore

Fi = {Rmax\countm&x > s} (7.8)

for 1 < j i < n.

5. Set r = 1, where r represents the number of items kept in the current
frequent itemsets.

6. Generate the candidate set Cr+i from Fr in a manner similar to that in
the A priori algorithm.

7. for each newly formed (r -f l)-itemset R [corresponding to the RmBX

along jth axis by Eq. (7.8)], with items (Ei, R2, . . . , Rr+i) in Cr+i, do
the following substeps.

(a) Calculate the fuzzy value of each transaction data t* in R as ̂ R =
P>iRi A fj,iR2 A ... A HiRr+1 , where fj,iRj is the membership value of tl

in region Rj . If the minimum operator is used for the intersection,
we have

r+l
(7.9)

(b) Calculate the scalar cardinality of R in the transaction data as

N

countR = HiR. (7.10)
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(c) if count fl is larger than or equal to the support s then put R in
Fr+l.

8. if Fr+i is null then go to the next step; else set r = r + l and repeat
steps 6-8.

9. Construct the association rules for all frequent g-itemset R with items
(Ri, RZ, ..., Rq], q > 2, using the following substeps.

(a) Form all possible association rules as

Hi A ... A Rk-i A Rk+l A ... A Rq -* Rk, (7.11)

for k = 1,..., q.

(b) Calculate the confidence values of all association rules using

A ... A HiR^ A HiRk+l A ...

10. Output the rules with confidence values larger than or equal to the pre-
defined confidence c.

The rules mined can serve as meta-knowledge concerning the given transac-
tions. Since each attribute uses only the linguistic term with the maximum
cardinality, the number of items remains the same as that of the original
attributes. Instead, if in step 4, all the regions with support values larger
than the threshold are considered, then the algorithm would generate more
rules while also consuming more time. Thus trade-off exists between rule
completeness and time complexity.

Determination of appropriate fuzzy sets jRJfc, k = 1, . . . , / , for quantitative
attribute a,j , is made using clustering. Here optimization of a goodness index
is made based on cluster compaction and separation [22], The number /
of such clusters and their corresponding updated centers TJ^I = 1, . . . , / , are
obtained. Let the initial set of overlapping membership functions be indicated
by the dotted line in Fig. 7.2. Clustering is used to tune the centers of these
functions, thereby translating the membership functions along the feature
axis. The final situation, after updating, is depicted by the solid line in the
figure.

Initially a quantitative attribute interval is divided into / linguistic sub-
intervals around the cluster centers, with a coverage (or overlapping) of p%
between adjacent linguistic partitions. The non-fuzzy partitioning is obtained
as a special case with p = 0. For the ith linguistic fuzzy set Rj. , the effective
upper and lower bounds dt and d^ are expressed as



FUZZY ASSOCIATION RULES 287

respectively, with a uniform overlap p between each pair of adjacent partitions.
Interestingness measures, based on statistics and information theory, have

been designed [22] for fuzzy association rules. Given a database
D = {t1^2,.. .,tN} with N transactions, let (Z, C) be an attribute-fuzzy
set pair (itemset) for attribute Z = X U Y having associated fuzzy set C —
A(JB. Here X is A is the antecedent, and Y is B the consequent of the fuzzy
association rule, such that X and Y are disjoint.

If the rule (X, A) => (Y, B) is interesting, it should have enough fuzzy sup-
port FS(z,c) and a high fuzzy confidence FC((X,A),(Y,B)) • These are computed
as

f*(Z,C) = Jj ,

where m is the number of items in itemset (Z, C), and

Fuzzy covariance is based on the co-occurrence of the antecedent (X, A) and
consequent (V, B) and is defined as

CoV((x,A),(Y,B'fl — FS(z,C) - FS(x,A) * FS(Y,B)' (7-i6)

Fuzzy correlation, additionally, takes the pattern distribution into considera-
tion. It is expressed as

/"71T\(7-17)

where Var(x,A} = FS(X,A)2-(FS(X,A))2 and FS
for (X, A). In both these cases, only a positive value implies that the an-
tecedent and consequent are related: The higher the value, the greater their
relation.

Let us now describe the information theoretic measures. The independence
entropy H^X,A)\(Y,B)) represents the amount of information needed per trans-
action, using a (false) assumption of independence, when the true probability
is FS(z,o [E(l- (7-14)] with true entropy H(z,c) for (Z,C). Here

- (1 - FS(Z>C)) Iog2 (1 - FS(XtA)FS(Y,B})

and

* Iog2 (l -
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[Note the analogy with the conventional entropy expression of Eq. (5.1)]. Us-
ing these, we obtain a good measure of correlation termed unconditional en-
tropy UE that is defined as

UE((X,A),(Y,B)) = H((X,A);(Y,B)) ~ H(Z,C)- (7-18)

This difference is always larger when the dependence is higher.
The unconditional entropy H(Y,B) of the consequent (V, B) is expressed as

H(Y,B) = -FS(Y,B) * Iog2 fS(Y,B) ~ (l ~ F$(Y,B)) * Iog2 (l - FS(Y,B)) •

The conditional probability P((Y,B)\(X,A)) is the same as fuzzy confidence
FC((x,A),(Y,B)) of Eq. (7.15) and is different from P(Y,B)- We use

H((Y,B)\(X,A)) =

- (1 - FC((X,A),(Y,B))}

The interestingness measure conditional entropy CE^X,A),(Y,B)) ls given as

CE((X,A),(Y,B)) ~ H(Y,B) — H((Y,B)\(X,A))-

Genetic algorithms are used [23] to tune the fuzzy support s and confidence
c, while generating fuzzy rules based on the A priori algorithm. The fitness
function is chosen to maximize the classification accuracy and minimize the
number of fuzzy rules.

Mining of fuzzy generalized rules, expressing associations across higher-
level concept hierarchies (fuzzy taxonomies), is described in Ref. [24]. The A
priori algorithm is extended to handle fuzzy sets in the generalized framework.
Linguistic hedges, like very, more or less, etc., are incorporated in these rules
to extract more meaningful knowledge.

7.11 CONCLUSIONS AND DISCUSSION

Mining of associations among items in large groups of transactions constitutes
an integral part of data mining. In this chapter we have described efficient
mining of association rules. These include the candidate generation and test
methods, and depth-first search methods. The concept of interesting rules
has been highlighted. Techniques involving multilevel rules, online generation
of rules, generalized rules, and scalable mining of rules have been outlined.
Fuzzy association rules have also been described, along with several fuzzy
interestingness measures.

Association rules have recently been applied to texture classification and
image segmentation [25]. The statistical and structural information of an
image are embedded in the local intensity variation patterns of the texture
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regions. Association rules are used to identify these frequently-occurring pat-
terns in the image, and discover relationships which have significant discrim-
inative power. The frequency of occurrence of these local patterns, within a
region, are used as the texture features.

In the following chapter we deal with rule mining in the soft computing
framework. A modular strategy enables splitting of the problem into subtasks.
This sort of divide-and-conquer approach is useful from the context of data
mining.
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8
Rule Mining with Soft

Computing

8.1 INTRODUCTION

Rule generation refers to the extraction and/or refinement of rules. It can
involve traditional rulebase generation by knowledge engineers, or incorporate
some sort of automation. When applied from the perspective of large data, we
term it as rule mining. As mentioned in Section 1.10, this includes association,
classification and dependency rule mining. In this chapter we concentrate on
the generation (or mining) of classification rules.

Rule generation from ANNs is gaining in popularity in recent times due to
its capability of providing some insight to the user about the symbolic knowl-
edge embedded within the network. Fuzzy sets are an aid in providing this
information in a more human comprehensible or natural form, and can han-
dle uncertainties at various levels. The neuro-fuzzy approach, symbiotically
combining the merits of connectionist and fuzzy approaches, constitutes a key
component of soft computing based rule generation [1].

Andrews et al. [2] have provided a classification scheme for connectionist
rule extraction algorithms. They take into consideration the

• expressive power of the rules: (1) prepositional or Boolean logic i.e.,
crisp or nonfuzzy, (2) nonconventional logic i.e., probabilistic or fuzzy;

• translucency of view taken in the algorithm about the underlying ANN
units: (1) decompositional approach (more analytical), where each inter-
nal element of the transparent network is examined, (2) pedagogical or
blackbox approach, where one observes only the input-output behavior
of the opaque network;
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• extent to which the underlying ANN incorporates specialized training
regimes i.e., portability,

• quality of the rules: (1) accuracy i.e., generalization to test cases, (2)
fidelity i.e., whether they can mimic the behavior of the ANN from
which they were generated, (3) consistency i.e., whether they produce
the same classification of test instances over different training instances,
(4) comprehensibility, in terms of the size of the rule set and the number
of antecedents per rule;

• algorithmic complexity of the technique.

Taha and Ghosh [3] have considered additional issues related to rule ex-
traction. These include the granularity of explanation, modifiability, theory
refinement capability (to handle incompleteness, inconsistency, and/or inac-
curacy of initial domain knowledge), stability (robustness) to corruption in
data or knowledge, and scalability for large datasets (or rulebases).

A recent trend in neural network design for large-scale problems is to split
the original task into simpler subtasks and use a subnetwork module for each
of the subtasks [4]. It has been shown that by combining the output of several
subnetworks in an ensemble, one can improve the generalization ability over
that of a single large network [5]. This type of divide-and-conquer strategy
makes it possible to effectively mine large volumes of data while discovering
information. Incorporation of high-level domain knowledge is also a useful
feature of data mining. The use of knowledge-based networks is a step in this
direction.

The present chapter provides a study on the modular approach to rule gen-
eration, with a focus on data mining. Section 8.2 provides a survey on existing
connectionist rule generation methods, along with their hybridizations with
other soft computing tools. Knowledge-based models are also discussed from
this perspective. The concept of modular hybridization is elaborated upon in
Section 8.3. Section 8.4 concludes the chapter.

8.2 CONNECTIONIST RULE GENERATION

The primary input to a connectionist rule generation algorithm is typically a
representation of a trained feedforward ANN (of Section 2.2.3), in terms of
its nodes and links, and sometimes the dataset. One interprets one or more
hidden and output units into rules, which may later be combined and simpli-
fied to arrive at a more comprehensible rule set. These rules can also provide
new insights into the application domain. The models are usually suitable in
data-rich environments and seem to be capable of overcoming the problem
of the knowledge acquisition bottleneck faced by knowledge engineers while
designing the knowledge base of traditional expert systems. The trained link
weights and node activation of the ANN are used to automatically generate
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the rules, either for later use in a traditional expert system or for refining the
initial domain knowledge or for providing justification (explanation) in the
case of an inferred decision.

In this section we provide a review on rule generation using neural (con-
nectionist) models, along with their hybridizations involving other soft com-
puting tools like fuzzy sets, genetic algorithms, and rough sets [1], The use
of knowledge-based networks, for this purpose, is also discussed in the soft
computing framework.

8.2.1 Neural models

Let us first consider the layered connectionist model by Gallant [6] used for
rule generation in the medical domain. The inputs and outputs consist of
crisp variables in all cases. Generally, the symptoms are represented by the
input nodes while the diseases and possible treatments correspond to the in-
termediate and/or output nodes. The model deals with sacrophagal problems,
using a linear discriminant network (with no hidden nodes) that is trained by
the simple pocket algorithm. The absence of the hidden nodes and nonlin-
earity limits the utility of the system in modeling complex decision surfaces.
Dependency information regarding the variables, in the form of an adjacency
matrix, is provided by the expert. Every input variable x is approximated by
three Boolean variables x[, x'2, x'3. Cell activation is discrete, taking on values
+1, —1, or 0, corresponding to logical values of true, false, or unknown. Each
cell computes its new activation y( as a linear discriminant function of the
XjS.

Rules are generated by traversing the trained connection weights as follows:

1. List all inputs that are known and have contributed to the ultimate
positivity of a discriminant.

2. Arrange the list by decreasing absolute value of the weights.

3. Generate clauses for an IF-THEN rule from this ordered list.

The user can also be queried to supplement incomplete input information.
During question generation, the system selects that unknown output vari-
able whose confidence is maximum. Then it backtracks along the connection
weights to find an unknown input variable, whose value is queried from the
user.

Ishikawa [7] demonstrates the training of a network using structural learn-
ing with forgetting. An examination of the resultant simplified and nonredun-
dant network architecture leads to easy extraction of rules. The stationary
(nonactive) positive weights get reduced and negative weights increased using
a decay factor. A total of 8124 samples of mushrooms, with 22 attributes
each, have been studied for the two-class (edible or poisonous) problem. The
method selects two or four most relevant attributes. For the two-attribute
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case, odor and spore-print-color were found to be important. A sample ex-
tracted rule is as follows:

IF (odor = almond OR anise OR none) AND (spore-print-color ^ green) THEN
mushroom = edible.

Duch et al. [8] modified this algorithm by constraining the weights to
{+1, —1,0}. This is supposed to result in the extraction of rules with more
logical interpretation. They have also used a generalization of RBF networks
for interpreting node functions as rules.

Setiono [9] has used a pruned network for extracting compact, meaningful
rules, in terms of hidden unit activation. The activation are clustered into
discrete values, and a process of splitting of hidden units and creation of
new subnetwork is repeated until each hidden unit has only a small number
of inputs connected to it. A penalty term augments a cross-entropy error
function that is minimized to encourage weight decay and remove redundant
weights. The accuracy and number of rules generated are claimed to be better
than those obtained by C4.5 [10]. Setiono has also reported [11] the extraction
of M of N type rules (described in Section 8.2.3) from a trained feedforward
network whose weights and inputs are restricted to values in {—1,1}. The
rules are claimed to possess desirable qualities like accuracy, simplicity and
fidelity.

Setiono and Liu [12] have also developed oblique decision trees that par-
tition the attribute space by hyperplanes (not necessarily axis-parallel) and
can readily be translated into a set of rules. Since an oblique decision tree
classifies patterns based on linear combinations of input attributes, the rules
are more compact than that generated by an univariate tree over the same
domain. Comparison is provided with other decision tree-based approaches,
like C4.5 and CART [13]. The compactness of these oblique rules is said to
result in better rule comprehensibility and consistency.

8.2.2 Neuro-fuzzy models

Nauck et al. [14, 15] have developed NEFCON, NEFCLASS, and NEFPROX,
using generic fuzzy perceptron, to model Mamdani-type [16] neuro-fuzzy sys-
tems. Since fuzzy systems are designed to exploit the tolerance for imprecision,
here they are not used to generate an exact solution. The learning procedure
uses a fuzzy error, and can operate on both fuzzy sets and rules. The incre-
mental rule learning algorithm can create a rulebase from scratch by adding
rule after rule, or can also operate on prior knowledge. The knowledge base
of the fuzzy system is implicitly embedded in the network structure. The
system is claimed to be simple and highly interpretable, as well as suitable
in providing support to users during decision-making involving classification
and function approximation.
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Rhee and Krishnapuram [17] generate rules from minimal approximate
fuzzy aggregation networks, involving hybrid operators with compensatory
behavior at the neuronal level. The linguistic labels and the corresponding
triangular membership functions for the input features are estimated from
the training data. The compensatory parameters are learned during gradient
descent, to estimate the type of aggregation employed. Pruning of redundant
features and/or hidden nodes helps in generating appropriate rules in terms
of AND-OR operators that are represented by these hybrid functions. Zhang
and Kandel [18] have also used compensatory fuzzy operators to effectively
learn fuzzy IF-THEN rules from both well- and ill-defined data.

Mitra and Pal [19] have used a fuzzy logical MLP for inferencing and rule
generation. The model consists of logical neurons employing conjugate pairs
of t-norms T and t-conorms S, like mm-raox and product^probabilistic sum,
in place of the weighted sum and sigmoidal functions of the conventional MLP.
Various fuzzy implication operators are used to introduce different amounts
of interaction during error backpropagation. The built-in AND-OR structure
of the model helps it to generate appropriate rules, expressed as disjunction
of conjunctive clauses.

8.2.3 Using knowledge-based networks

One of the major problems in connectionist or neuro-fuzzy design is the
choice of the optimal network structure. This has an important bearing on
any performance evaluation. Moreover, the models are generally very data-
dependent, and the appropriate network size also depends on the available
training data. Various methodologies developed for selecting the optimal net-
work structure include growing and pruning of nodes and links, employing
genetic search, and embedding initial knowledge in the network topology. The
last approach - embedding initial knowledge - is usually followed in the case
of knowledge-based networks. It is formally shown [20] that such knowledge-
based networks require relatively smaller training set sizes for correct general-
ization. When the initial knowledge fails to explain many instances, additional
hidden units and connections need to be added. The initial encoded crude
domain knowledge may be refined with experience, by performing learning
in the data environment. The resulting networks generally involve less re-
dundancy in their topology. Embedding of prior knowledge, involving user
interaction, is also a desirable feature of data mining.

8.2.3.1 Connectionist models Towell and Shavlik [21] have designed a hybrid
learning system KBANN and have applied it to problems of molecular biology.
Disjunctive rules are rewritten as multiple conjunctive rules while mapping
into the network structure. It is primarily a theory refinement system that is
capable of pruning an inserted rule set, but not capable of adding new rules.
It is largely topology-preserving and assumes that the initial domain theory
is basically correct and nearly complete.
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An expansion of the network guided by both the domain theory and train-
ing data has been reported in TopGen by Opitz and Shavlik [22]. Dynamic
addition of hidden nodes are made at the best place by heuristically searching
through the space of possible network topologies, in a manner analogous to
the adding of rules and conjuncts to the symbolic rulebase. This approach
uses a specialized ANN architecture with a specialized training algorithm. It
generates sparser rule sets as compared to KBANN and overcomes the latter's
limitation of not being able to extend a relatively weak initial domain theory.
The additional computational expense is justified in terms of the human ex-
pert's willingness to wait for an extended period of time for better predictive
accuracy.

A way of using the knowledge of the trained neural model to extract revised
rules for the problem domain is described by Fu [23] (Subset algorithm) and
Towell and Shavlik [24] (M of N algorithm). Knowledge, in the form of rules
in disjunctive normal form, is encoded into the network. The other links
represent low-weighted connections, allowing subsequent refinement. It is
assumed that the neurons have binary inputs and hard-limiting activation
functions. Even though the algorithms are exponential in complexity, their
inherent simplicity makes them extremely useful.

The Subset algorithm [23] initially searches for any single weight (at the
input of a neuron) exceeding its bias, and it rewrites all conditions so found as
rules with single input variable. The breadth-first search for all the hidden and
output nodes (over the input links) continues for increasing sizes of sets, until
all such sets have been explored and possibly rewritten as rules in disjunctive
normal form. The extracted rules are simple to understand and their size
can be restricted by specifying the number of premises (antecedents) to be
considered. Finally the algorithm removes subsumed and overly general rules.
The main steps of the algorithm are outlined as follows:
For each hidden and output unit repeat steps 1 and 2.

1. Extract up to @p subsets of the positively weighted incoming links, whose
summed weight is greater than the bias of the unit.

2. for each subset P of J3P subsets found in step 1, repeat the following.

(a) Extract up to /?„ minimal subsets of negatively weighted links,
whose summed weight is greater than the bias of the unit minus
the sum of P.

(b) Let Z be a new predicate used nowhere else.

(c) With each subset M of /3n subsets found in step 2(a), form the rule
"IF N THEN Z."

(d) Form the rule "IP P and NOT Z THEN name-of-unit."

However, some of the problems associated with this algorithm are as follows
[3]. It requires lengthy, exhaustive searches of size O(2k) for a hidden or output
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node with fan-in of k. It extracts a large set of rules, up to @p * (1 -f /3n), where
0P and (3n are the number of subsets of positively and negatively weighted
links, respectively. Some of the generated rules may be repetitive, as per-
mutations of rule antecedents are not taken care of automatically. Moreover,
there is no guarantee that all useful knowledge embedded in the trained net-
work will be extracted. To avoid the otherwise prohibitive combinatorics, all
implementations of Subset algorithm typically use heuristics.

The Subset algorithm has been modified by Towell and Shavlik [24] to
design the M of N algorithm for extracting meaningful rules. A general rule
in this case is of the form: IF (at least M of the following N antecedents
are true) THEN — The rationale is to find a group of links that form an
equivalence class, whose members have similar effect (weight values) and can
be used interchangeably with one another.

The steps of this algorithm include

• clustering the weights of each (hidden and output) neuron into groups,

• averaging their values to create equivalence classes,

• eliminating low value weights if they have no significant effect on the
sign of the total activation, and

• optimizing, by freezing the remaining weights and retraining the biases
using the backpropagation algorithm.

This is followed by rule extraction. Arithmetic is performed such that one
searches for all weighted antecedents, which, when summed up, exceed the
threshold value of a given neuron. When possible, the rules are simplified to
eliminate superfluous weights and thresholds.

This algorithm has good generalization (accuracy), but can have degraded
comprehensibility [2]. Note that the algorithm considers groups of links as
equivalence classes, thereby generating a bound on the number of rules rather
than establishing a ceiling on the number of antecedents. The computational
complexity is O(k3 + (fc2.j)), where j is the number of examples. Addition-
ally, the rule extraction procedure involves a backpropagation step requiring
significant computational overhead.

8.2.3.2 Incorporating fuzzy sets A brief survey on the knowledge-based net-
works involving fuzziness at different stages is provided here. Knowledge
extracted from experts in the form of membership functions and fuzzy rules
(in AND-OR form) is used to build and preweight the neural net structure,
which is then tuned using training data.

A major problem of using MLPs to refine rule-based knowledge [23, 24]
is the preservation of symbolic knowledge (stability) under the weight tuning
mechanism (plasticity) of the backpropagation algorithm. Another limitation
is that unless the initial rulebase is roughly complete, the initial network
architecture may not be sufficiently rich for handling the problem domain



300 RULE MINING WITH SOFT COMPUTING

by incorporating new knowledge. The Adaptive Resonance Theory (ART)
architecture [25] is designed to circumvent this stability-plasticity dilemma.
Learning in ARTMAP [26] is match-based (not error-based); it does not wash
away existing knowledge and the meanings of units do not shift. Use of fuzzy
set theoretic concepts lead to the formulation of the fuzzy ARTMAP [27].

Tan [28] has used a generalization of fuzzy ARTMAP, called 'cascade
ARTMAP', as a fuzzy knowledge-based network. It represents intermediate
attributes and rule cascades of rule-based knowledge explicitly, and performs
multistep inferencing. A rule insertion algorithm translates IF-THEN symbolic
rules into cascade ARTMAP architecture. This knowledge can be refined and
enhanced by the learning algorithm. During learning, new recognition cate-
gories (rules) can be created dynamically to cover the deficiency of the domain
theory. The extracted rules involve discrete inputs and are of good quality.
The algorithmic complexity is linear in the number of recognition categories.
Results indicate that the performance is superior to that of the KB ANN [21],
ID3 and MLP. The extracted rules are claimed [28] to be simpler and more
accurate than the M of N rules [24]. Besides, each extracted rule is associ-
ated with a confidence factor that indicates its importance or usefulness. This
allows ranking and evaluation of the extracted knowledge.

Machado and Rocha [29] have used an interval-based representation for
membership grades (MGI] to allow reasoning with different types of uncer-
tainty, namely, vagueness, ignorance, and relevance. The model incorporates
the facilities of incremental learning, inference, inquiry, censorship of input
information, and explanation, as in expert systems. The utility-based inquiry
process permits significant reduction of consultation cost or risk and gives the
system the common sense property possessed by experts when selecting tests
to be performed. The ability to criticize input data when they disrupt a trend
of acceptance or rejection observed for a hypothesis mimics the behavior of
experts, who are often able to detect suspicious input data and either reject
them or ask for their confirmation. The explanation algorithm provides re-
sponses to queries such as how a particular conclusion was reached or why a
particular question was formulated. The network forms a set of pathways that
compete to send the largest evidential flow to the output neuron representing
the hypothesis. The structure of the winning pathway represents a chain of
fuzzy pseudo-production rules, which can be presented to the user either in a
graphical format or as English text.

Application of this algorithm has been made to the deforestation moni-
toring of the Amazon region, using Landsat-V satellite images. The classes
considered are forest, savanna, water, deforested area, cloud, and shadow.
Eighty-two numerical features of spectral, textural, and geometric nature were
measured on each image segment (of spectrally homogeneous regions, gener-
ated by region growing). Fuzzy classification allows the modeling of complex
situations such as transition phenomena (as in the regeneration of forest in
a previously burned area) or multiple classification (as in the case of forest
overcast by clouds).
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A model by Mitra et al. [30] has been developed for classification, inferenc-
ing, querying, and rule generation. It is capable of generating both positive
(indicating the belongingness of a pattern to a class) and negative (indicating
its degree of not belonging to a class) rules in linguistic form to justify any de-
cision reached. This is found to be useful for inferencing in ambiguous cases.
The knowledge encoding procedure, unlike many other methods [21, 23], in-
volves a nonbinary weighting mechanism. The a priori class information and
the distribution of pattern points in the feature space are taken into account
while encoding the crude domain knowledge from the dataset among the con-
nection weights, using fuzzy intervals and linguistic sets in the process. Each
pattern class is modeled in terms of positive and negative hidden nodes. The
trained knowledge-based network is used for rule generation in IF-THEN form.
These rules describe the extent to which a test pattern belongs or does not
belong to one of the classes, in terms of antecedent and consequent clauses
provided in natural form. Backtracking along maximal weighted paths of the
trained net, utilizing its input and output activation (with confidence factor),
enables generation of these clauses.

8.2.3.3 Incorporating genetic algorithms Opitz and Shavlik [31] use the do-
main theory of Towell and Shavlik [21, 24] to generate a knowledge-based
network structure that is evolved using GAs. Random perturbation is ap-
plied to create an initial set of candidate networks or population. A node is
perturbed by either deleting it or adding new nodes to it. Next, these net-
works are trained using backpropagation and placed back into the population.
New networks are created by using crossover and mutation operators, specifi-
cally designed to function on these networks. The algorithm tries to minimize
the destruction of the rule structure of the crossed-over networks, by keeping
intact nodes belonging to the same syntactic rule (i.e., the nodes highly con-
nected to each other). The mutation operator adds diversity to a population,
while still maintaining a directed heuristic search technique for choosing where
to add nodes. In this manner the algorithm searches the topology space, in
order to find suitable networks which are then trained using backpropagation.

8.2.3.4 Incorporating rough sets Concept of rough sets is integrated with
fuzzy-neural network for designing a knowledge-based rough-fuzzy MLP [32,
33], where the theory of rough sets is utilized for extracting crude domain
knowledge in the form of IF-THEN rules. These rules are encoded among the
connection weights, with their number and syntax automatically determining
the network topology in terms of hidden nodes and links. Methods are derived
to model convex decision regions with single-object representatives, as well
as arbitrary decision regions with multiple-object representatives. From the
perspective of pattern recognition, this implies using a single prototype to
model a (convex) decision region in the first case. In the second case, this
means using multiple prototypes to serve as representatives of any arbitrary
decision region. A three-layered fuzzy MLP is considered, where the feature
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space gives the condition attributes and where the output classes give the
decision attributes, so as to result in a decision table. Rules are then generated
from the table by computing relative reducts. The dependency factors of these
rules are encoded as the initial weight values of the links.

8.3 MODULAR HYBRIDIZATION

It is believed that the use of Modular Neural Network enables a wider use of
ANNs for large-scale systems. Embedding modularity (i.e., to perform local
and encapsulated computation) into neural networks leads to many advan-
tages as compared to the use of a single network. For instance, constraining
the network connectivity increases its learning capacity and permits its appli-
cation to large-scale problems [4] with relevance to data mining. It is easier
to encode a priori knowledge in modular neural networks. In addition, the
number of network parameters can be reduced by using modularity. This fea-
ture speeds computation and can improve the generalization capability of the
system [34].

This section describes a way of integrating subnetworks of rough-fuzzy
MLPs, using a modular evolutionary algorithm, for classification and rule
generation [35, 36]. Rough set theory is applied for extracting dependency
rules directly from real-valued attribute table consisting of fuzzy membership
values. This helps in preserving all the class representative points in the
dependency rules by adaptively applying a threshold that automatically takes
care of the shape of membership functions.

An /-class classification problem is split into I two-class subproblems. Crude
subnetwork modules are initially encoded, for each two-class sub-problem,
from the dependency rules. These subnetworks are then combined and the
final network is evolved using a GA with restricted mutation operator which
utilizes the knowledge of the modular structure already generated, for faster
convergence. The GA tunes the fuzzification parameters, and network weight
and structure simultaneously, by optimizing a single fitness function. This
methodology helps in imposing a structure on the weights, which results in
a network more suitable for rule generation. Performance of the algorithm is
compared with related techniques.

8.3.1 Rough fuzzy MLP

As pointed out in Section 5.6.3, an n-dimensional pattern Xj is represented in
the form of Eq. (5.18), with y^,..., y%n being the activations of the 3n neurons
in the input layer of the network. An /-class problem domain corresponds to
/ nodes in the output layer, such that the membership of the ith pattern in
class k is defined by Eq. (5.23). The basics of rough sets have already been
introduced in Section 2.2.6, for the benefit of the readers. Before going to the
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details of the modular hybrid system, we provide in this section an overview
of the mathematical preliminaries using rough set theoretic concepts for the
interested reader.

8.3.1.1 Rule generation Let S = < U, A > be a decision table, with C and
D = {di, ...,di} its sets of condition and decision attributes, respectively.
Divide the decision table S = < U, A > into / tables Si = < Ui,Ai >, i =
1, ...,/, corresponding to the / decision attributes di, ..., di , where

U = Ui U ... U Ut and A{=CU {di}.
Let {xn, ..., Xip} be the set of those objects of Ui that occur in «%, i = 1, ..., /.

Now for each c^-reduct B = {61, ...,&&} (say), a discernibility matrix (de-
noted Md<(jB)) from the dj-discernibility matrix is denned as follows [32].

Cij = {a € B : a(xi) ^ a ( x j ) } , (8.1)

as
For each object Xj 6 x^, . . . ,xip, the discernibility function f£ is denned

) = i < ». j ^ ». j < ». ca * 0} ' (8-2)
where V(c»j) *s ^he disjunction of all members of 0^. Then f%* is brought
to its conjunctive normal form (c.n.f). One thus obtains a dependency rule
ri, namely, Pi <— c^, where Pi is the disjunctive normal form (d.n.f.) of
/J,je Z I , . . . , Z P .

The dependency factor dfc for r* is given by

card(POSi(di}}
dfi = - -TTm - , (8.3)

card(Ui)

where POSi(di) = Uxe/d ^(-^)» an<^ ^tPO is the lower approximation of X
with respect to /». In this case, dfi = 1 [32].

8.3.1.2 Knowledge encoding Consider the case of feature j for class Ck in the
/-class problem domain. The inputs for the i-th representative sample Xj are
mapped to the corresponding three-dimensional feature space of A^oiu(o.,)(Xi),
/Wdium(a.,)(Xi), and /xhip/l(^)(Xi) by Eq. (5.18). Let these be represented
by Lj, Mj, and Hj, respectively. As the method considers multiple objects
in a class, a separate nk x 3n-dimensional attribute-value decision table is
generated for each class Ck (where Uk indicates the number of objects in Ck)-

The absolute distance between each pair of objects is computed along each
attribute Lj, Mj, Hj for all j. We modify Eq. (8.1) to directly handle a
real-valued attribute table consisting of fuzzy membership values. We define

Cij = {a e B : | a(xi) - a(xj) \> Th] (8.4)

for i, j = 1, . . . ,nfc, where Th is an adaptive threshold. Note that the adap-
tivity of this threshold is in-built, depending on the inherent shape of the
membership function.
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Fig. 8.1 Illustration of adaptive thresholding of membership functions.

Consider Fig. 8.1. Let ai, a2 correspond to two membership functions
(attributes), with a? being steeper than a\. It is observed that r\ > r^. This
results in an implicit adaptivity of Th while computing Cij in the discernibility
matrix directly from the real-valued attributes. This is particularly useful in
modeling multimodal class distributions.

The hidden layer nodes model the first-level (innermost) operator in the
antecedent part of a rule, which can be either a conjunct or a disjunct. The
output layer nodes model the outer-level operands, which can again be either
a conjunct or a disjunct. For each inner-level operator, corresponding to one
output class (one dependency rule), one hidden node is dedicated. Only those
input attributes that appear in this conjunct or disjunct are connected to the
appropriate hidden node, which in turn is connected to the corresponding out-
put node. Each outer level operator is modeled at the output layer by joining
the corresponding hidden nodes. Note that a single attribute (involving no
inner level operators) is directly connected to the appropriate output node
via a hidden node, to maintain uniformity in rule mapping.

Let the dependency factor for a particular dependency rule for class Ck be
df = a = 1 by Eq. (8.3). The weight w^ between a hidden node i and output
node k is set at -^ +e, where fac refers to the number of outer-level operands
in the antecedent of the rule and e is a small random number taken to destroy
any symmetry among the weights. Note that fac > 1 and each hidden node
is connected to only one output node. Let the initial weight so clamped at
a hidden node be denoted as ft. The weight w®a. between an attribute a,
(where a corresponds to low (L), medium (M), or high (H) ) and hidden node
i is set to jj^j + s, such that facd is the number of attributes connected
by the corresponding inner-level operator. Again facd > 1. Thus for an
/-class problem domain there are at least / hidden nodes. All other possible
connections in the resulting network are set as small random numbers. It is to
be mentioned that the number of hidden nodes is automatically determined
from the number of dependency rules, while their connectivity follows from
the syntax of these rules.
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Fig. 8.2 Intra- and intermodule links.

8.3.2 Modular knowledge-based network

This involves two phases. First an /-class classification problem is split into /
two-class problems. Rough set theoretic concepts are used to encode domain
knowledge into each of the / subnetworks, using Eqs. (8.2)-(8.4). The num-
ber of hidden nodes and connectivity of the knowledge-based subnetworks is
automatically determined. A two-class problem leads to the generation of
one or more crude subnetworks, each encoding a particular decision rule. Let
each of these constitute a pool. So we obtain m > I pools of knowledge-based
modules. Each pool k is perturbed to generate a total of n& subnetworks,
such that m = ... = Ufc = ... = nm. These pools constitute the initial pop-
ulation of subnetworks, which are then evolved independently using genetic
algorithms.

At the end of training, the modules (or subnetworks) corresponding to
each two-class problem are concatenated to form an initial network for the
second phase. The intermodule links are initialized to small random values
as depicted in Fig. 8.2. A set of such concatenated networks forms the initial
population of the GA. Note that the individual modules cooperate, rather
than compete, with each other while evolving towards the final solution. The
mutation probability for the intermodule links is now set to a high value,
while that of intramodule links is set to a relatively lower value. This sort
of restricted mutation helps preserve some of the localized rule structures,
already extracted and evolved, as potential solutions. The initial population
for the GA of the entire network is formed from all possible combinations
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of these individual network modules and random perturbations about them.
This ensures that for complex multi-modal pattern distributions all the dif-
ferent representative points remain in the population. The algorithm then
searches through the reduced space of possible network topologies. The steps
are summarized below, followed by an example.

1. for each class, generate rough set dependency rules.

2. Map each of the dependency rules to a separate subnetwork module
(fuzzy MLP).

3. Partially evolve each of the subnetworks using conventional GA.

4. Concatenate the subnetwork modules to obtain the complete network.
For concatenation the intramodule links are left unchanged while the
intermodule links are initialized to low random values. Note that each
of the subnetworks solves a two-class classification problem, while the
concatenated network solves the actual /-class problem. Every possi-
ble combination of subnetwork modules is generated to form a pool of
networks.

5. The pool of networks is evolved using a modified GA with an adaptive
or variable mutation operator. The mutation probability is set to a low
value for the intramodule links and to a high value for the intermodule
links.

8.3.2.1 Example Consider a problem of classifying a two dimensional data
into two classes. The input fuzzifier maps the features into a six dimensional
feature space. Let a sample set of rules obtained from rough set theory be

Ci <- (Li A M2) V (H2 A MI), C2 «- M2 V HI, C2 <- L2 V LI,

where Lj, Af,-, Hj correspond to mow(a^, Hmedium(aj), Vhigh^), respectively.
For the first phase of the GA three different pools are formed, using one crude
subnetwork for class 1 and two crude subnetworks for class 2, respectively.
Three partially trained subnetworks result from each of these pools. They
are then concatenated to form ( 1 x 2 ) = 2 networks. The population for
the final phase of the GA is formed with these networks and perturbations
about them. The steps followed in obtaining the final network is illustrated in
Fig. 8.3. The corresponding impact of the different stages of network evolution
on the decision regions, generated in the feature space, is depicted in Fig. 2.9.

8.3.2.2 Characteristics Use of this scheme for generating modular knowledge-
based networks has several advantages.

• Sufficient reduction in training time is obtained, as the above approach
parallelizes the GA to an extent. Because the search string of the GA for
subnetworks is smaller, more than linear decrease in searching time is
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Fig. 8.3 Steps for designing a sample modular rough-fuzzy MLP.
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obtained. Also very small number of training cycles are required in the
refinement phase, as the network is already very close to the solution.

The use of rough sets for knowledge encoding provides an established
mathematical framework for network decomposition. The search space
is reduced, leading to shorter training time. The initial network topology
is also automatically determined and provides good building blocks for
the GA.

• The algorithm indirectly constrains the solution in such a manner that
a structure is imposed on the connection weights. This is helpful for
subsequent rule extraction from the weights, as the resultant network
has sparse but strong interconnection among the nodes.

8.3.3 Evolutionary design

Here we describe the use of GAs for evolving the weight values as well as the
structure of the modular subnetworks. The input and output fuzzification
parameters are also tuned. The initial population consists of all possible net-
works generated from rough set theoretic rules. As explained in Section 2.2.5,
GAs involve three basic procedures, namely, (i) encoding of the problem pa-
rameters in the form of binary strings, (ii) application of genetic operators like
crossover and mutation, and (iii) selection of individuals based on some ob-
jective function to create a new population. Each of these aspects is discussed
below with relevance to this algorithm [36].

8.3.3.1 Chromosomal representation The problem variables consist of the
weight values and the input/output fuzzification parameters. Each of the
weights is encoded into a binary word of 16-bit length, where [000...0] decodes
to —128 and [111...1] decodes to 128. An additional bit is assigned to each
weight to indicate the presence or absence of the corresponding link. If this
bit is 0, then the remaining bits are unrepresented in the phenotype. The
total number of bits in the string is therefore dynamic. Thus a total of 17
bits are assigned for each weight. The fuzzification parameters tuned are the
centers (c) and radius (A) for each of the linguistic attributes low, medium,
and high of each feature, and output fuzzifier parameters /<* and fe. These are
also coded as 16-bit strings in the range [0,2]. The chromosome is obtained
by concatenating all the above strings. Sample values of the string length are
around 2000 bits for reasonably sized networks.
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link tag bit

_J . . . . tr ̂ ^wirel-Em
weight i (16+ 1) bits

(16 bits each)

Initial population is generated by coding the networks obtained by rough
set-based knowledge encoding and by random perturbations about them. A
population size of 64 was considered.

8.3.3.2 Genetic operators Here we provide details on the implementation
aspects of the different genetic operators, namely, crossover, mutation, se-
lection, and fitness function used. These notions were introduced earlier in
Section 2.2.5.

Crossover. It is obvious that due to the large string length, single-point
crossover would have little effectiveness. Multiple-point crossover is adopted,
with the distance between two crossover points being a random variable be-
tween 8 and 24 bits. The crossover probability is fixed at 0.7.

Mutation: Because the search string is very large, the influence of mutation
is more on the search. Each of the bits in the string is chosen to have some
mutation probability (pmut), but with a spatiotemporal variation. The muta-
tion probabilities vary along the encoded string, with the bits corresponding
to intermodule links being assigned a higher probability as compared to in-
tramodule links. This is done to ensure least alterations in the structure of the
individual modules already evolved, by incorporating the domain knowledge
extracted through rough set theory.

Choice of fitness function: In GAs the fitness function is the final arbiter
for string creation, and the nature of the solution obtained depends on the
objective function. An objective function of the form described below is cho-
sen.

(8.5)

where
f _ No. of correctly classified samples in training set

•'I Total no. of samples in training set

No. of links present
Total no. of links possible"

Here ai and 0:2 determine the relative weightage of each of the factors. a\ is
taken to be 0.9 and ct2 is taken as 0.1, to give more importance to the clas-
sification score as compared to the network size in terms of number of links.
Note that we optimize the network connectivity, weights, and input-output
fuzzification parameters simultaneously.

Selection: This is done by the roulette wheel method. The probabilities are
calculated on the basis of ranking of the individuals in terms of the objective
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function. Elitism is incorporated in the selection process by comparing the
fitness of the best individual of a new generation to that of the current gen-
eration. If the latter has a higher value, then the corresponding individual
replaces a randomly selected individual in the new population.

8.3.4 Rule extraction

A rule extraction algorithm [37], based on the hybrid model of Section 8.3.2,
is presented here. The performance of the rules is evaluated quantitatively. A
quantitative comparison of the rule extraction algorithm is made with some
existing ones like Subset [23], M of N [24], and X2R [38]. The steps of the
algorithm are provided below.

1. Compute the following quantities:
PMean = Mean of all positive weights, PThres\ — Mean of all posi-
tive weights less than PMean, PThres-2 = Mean of all weights greater
than PMean. Similarly, calculate NMean, NThresi, and NThres-z for
negative weights.

2. for each hidden and output unit

(a) for all weights greater than PThres2, search for positive rules; and
for all weights less than NThres2, search for negative rules, only,
by Subset method.

(b) Search for combinations of positive weights above Pthresi and
negative weights greater than NThre§2 that exceed the bias. Sim-
ilarly, search for negative weights less than NThres\ and positive
weights below PThresi.

3. Associate with each rule j a confidence factor cfj, given by Eq. (2.36).

Since the learning algorithm imposes a structure on the network, resulting
in a sparse network having few strong links, the PThres and NThres values
are well separated. Hence the above rule extraction algorithm generates most
of the embedded rules over a small number of computational steps.

The computational complexity of the algorithm is as follows. Let the net-
work have i, h, o numbers of input, hidden, and output nodes, respectively.
Let us make the assumption that i = h = o = k. Let the fraction of weights
having value in [0,PThresi), [PThresi,PThres2), [PThres2,oo) be p\, P2,
PS, respectively. Similarly, let the corresponding fractions for negative weights
be rai, r&2, n3. Then the computational complexity (C) becomes

If rii, ri2, PI, P2 -C p3, ra3,
C » 4fc(2p3fc + 2n3*) = 4fc(ein2.p3fc 4- ezn2.n3fc).
Also if p3, n3 < 1,
C w 4Ar(l + log 2(p3 + n3)A: 4- 0.5(log 2(p3 + n3))

2A;2, i.e., C
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An important consideration is the order of application of rules in a rule
base. Since most of the real-life patterns are noisy and overlapping, rulebases
obtained are often not totally consistent. Hence multiple rules may fire for a
single example. Several existing approaches apply the rules sequentially [3],
often leading to degraded performance. The confidence factors, associated
with the extracted rules, help in circumventing this problem. The quantita-
tive measures used to evaluate these generated rules have been described in
Section 2.4.2.

8.3.5 Results

This genetic-rough-neuro-fuzzy algorithm has been implemented on both real-
life (speech, medical) and artificially generated data [35, 36]. In this section
we provide sample results on the Vowel data. Figure 5.10 depicts the six
Telugu (it is a language in India) vowel classes in the F\-F% plane. These
overlapping classes will be denoted by C\, C^,..., CQ. The rough set theoretic
technique is applied on the data to extract some knowledge, which is initially
encoded among the connection weights of the subnetworks. The data are first
transformed into a nine-dimensional linguistic space.

The methodology described here is termed Model S. Other models com-
pared include:
(i) Model O: An ordinary MLP trained using backpropagation (BP).
(ii) Model F: A fuzzy MLP trained using BP.
(iii) Model R: A rough-fuzzy MLP trained using BP.

8.3.5.1 Classification Recognition scores obtained by Model S are presented
in Table 8.2. It also shows a comparison with other related MLP-based clas-
sification methods (Models O, F, R). In all cases, 10% of the samples are used
as training set, and the remaining samples are used as test set. Ten such
independent runs are performed, and the mean value and standard deviation
of the classification accuracy, computed over them, are presented in Table 8.2.
The dependency rules, as generated via rough set theory and used for encod-
ing crude domain knowledge, are shown in Table 8.1. The values of input
fuzzification parameters used are also presented.

The classification accuracies obtained by the models are analyzed for sta-
tistical significance. Tests of significance are performed for the inequality of
means (of accuracies) obtained using the different algorithms. Since both
mean pairs and the variance pairs are unknown and different, a generalized
version of t-test is appropriate in this context [39]. The test confidence level
considered was 95%. In Table 8.2, we present the mean and standard devia-
tion (SD) of the accuracies. Based on these, the value of the test statistics is
computed. If the value exceeds the corresponding tabled value, the means are
unequal with statistical significance (algorithm having higher mean accuracy
being significantly superior to the one having lower value).
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Table 8.1 Rough set dependency rules for Vowel data and input fuzzification param-
eter values

Ci *- Mi V L3

Ci «— MI V M2
C2 <- M2 V M3 V (#1 A A/2)
C2 «- M2 V H3
C3 <- (Li A H2) V (Mi A H2)
C3 <- (Li A H2) V (Li A M3)
C4 <— (Li A L2) V (Li A L3) V (L2 A M3) V (Li A M3)
C5 <— (Hi A M2) V (Mi A M3) V (Mi A M2) V (M2 A LI)
C5 «- (Hi A M2) V (Mi A M2) V (Ha A H3) V (H2 A L^
C5 <— (L2 A LI) V (H3 A M3) V MI
C6 <- L! V M3 V L2

C6 <- Mi V H3

C6 *- LI V H3

C6 *- MI V M3 V L2.

Fuzzification parameters:
Feature 1: CL = 0.348, CM = 0.463, CH = 0.613, AI, = 0.115, \M = 0.150, \H = 0.134
Feature 2: d, = 0.219, CM = 0.437, CH = 0.725, AL = 0.218, AM = 0.253, AH = 0.288
Feature 3: CL = 0.396, CM = 0.542, CH = 0.678, XL = 0.146, \M = 0.140, XH = 0.135

It is observed from Table 8.2 that Model S performs the best with the least
network size as well as least number of sweeps. For Model R, the classification
performance on test set is marginally better than that of Model S, but with
significantly higher number of links and training sweeps required. Comparing
models F and R, we observe that the incorporation of domain knowledge in
the latter through rough sets boosts its performance. The variation of the
classification accuracy of the models with iteration is also studied. Model S
converges after about 90 iterations of the GA, providing the highest accuracy
compared to all the other models. The backpropagation-based models require
about 2000-5000 iterations for convergence.

Table 8.2 Comparative performance of different models on Vowel data

Models

Accuracy(%)
(Mean, SD)
No. of links

Sweeps

Model O
Train
65.4,
0.5

Test
64.1,
0.5

131
5600

Model F
Train
84.1,
0.4

Test
81.8,
0.5

210
5600

Model R
Train
86.7,
0.3

Test
86.0,
0.2

152
2000

Model S
Train
87.1,
0.2

Test
85.8,
0.2

84
90

SD: Standard Deviation

It is observed that Model F results in a dense network with weak links,
while the incorporation of rough sets, modular concepts, and GAs in Model
S produces a sparse network with strong links. The latter is, therefore, more
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Fig. 8.4 Positive connectivity of the network obtained for Vowel data, using Model
S. (Bold lines indicate weights greater than PThres-z, while others indicate values
between PThresi and PThresz).

suitable for rule extraction. The connectivity (positive weights) of the trained
network is shown in Fig. 8.4.

8.3.5.2 Rule extraction We use the algorithm explained in Section 8.3.4 to
extract refined rules from the trained network (Model S). These rules are
compared to those obtained by the Subset method [23], M of N method [24],
a pedagogical method X2R [38], and a decision tree-based method C4.5 [10]
in terms of the quantitative performance measures (Section 2.4.2). The set of
rules extracted from the network is presented in Table 8.3, along with their
certainty (confidence) factors (cf). The values of the fuzzification parameters
of the membership functions L, M, and H are also mentioned.

A comparison of the performance indices of the extracted rules is presented
in Table 8.4. Since the network obtained using Model S contains fewer links,
the generated rules are less in number and have high certainty factor. Ac-
cordingly, it possesses relatively higher percentage of uncovered region, though
the accuracy does not suffer much. On the other hand, the Subset algorithm
achieves the highest accuracy but requires the largest number of rules and
computation time. In fact, while the accuracy (computation time) of Subset
method is marginally better (or worse) than Model S, the size of the rule base
of Model S is significantly lower.

The accuracy, user's accuracy and kappa achieved by Model S, are better
than those of M of N, X2R, and C4.5. The X2R algorithm requires least
computation time but achieves least accuracy with more rules. The Conf
index is the minimum for rules extracted by Model S; it also has a high
fidelity of 94.22%.
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Table 8.3 Rules extracted from trained network for Vowel data and input fuzzification
parameter values

C3

C4

Mi V L3 V M2

tfiVM2

M2 VM3

Mi A ~Hi A L2 A M2

LI A L2 A L3

Mi A .ff 2
Mi AM2

Hi AM2

c/ = 0.851
cf = 0.755
c/ = 0.811
c/ = 0.846
c/ = 0.778
cf = 0.719
cf = 0.881
c/ = 0.782
cf = 0.721
c/ = 0.717.

Fuzzification parameters :
Feature 1 : CL = 0.34, CM = 0.502, CH = 0.681,

AL = 0.122, \M = 0.154, AH = 0.177
Feature 2 : CL = 0.217, CM = 0.431, CH = 0.725,

XL = 0.211, AM = 0.250, AH = 0.288
Feature 3 : CL = 0.380, CM = 0.540, CH = 0.675,

AL = 0.244, AM = 0.212, AH = 0.224

Table 8.4 Comparative performance of rules extracted by various methods for Vowel
data

Algorithm

Model S
Subset
Mof N

X2R
C4.5

Accuracy

81.02
82.01
79.00
76.00
79.00

User's
accuracy

83.31
82.72
80.01
75.81
79.17

Kappa

78.17
77.29
74.55
72.34
77.21

Uncovered
region (%)

3.10
2.89
2.10
2.72
3.10

No. of
rules

10
16
14
14
16

CPU
time
(sec)
1.1
1.4
1.2
0.9
1.0

Con/

1.4
1.9
1.9
1.7
1.5
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8.4 CONCLUSIONS AND DISCUSSION

In this chapter we have provided an exhaustive survey of rule generation in
the soft computing framework involving hybridization of its different tools
like fuzzy sets, ANNs, rough sets, and GAs. Incorporation of domain knowl-
edge involving user interaction generates knowledge-based networks. This is
a useful feature in data mining. Rule generation from fuzzy and nonfuzzy
knowledge-based networks are found to result in refined rules.

A divide-and-conquer strategy involving modular subnetworks is effective
for mining large datasets. Such a methodology, incorporating the four soft
computing tools (namely, ANNs, fuzzy sets, GAs, and rough sets), has been
used for designing a knowledge-based network for pattern classification and
rule generation. The algorithm involves synthesis of several fuzzy MLP mod-
ules, each encoding the rough set rules for a particular class. These knowledge-
based modules are refined using a GA. The genetic operators are implemented
in such a way that they help preserve the modular structure already evolved.
It is found that this scheme results in superior performance in terms of classi-
fication score, training time, and network sparseness (thereby enabling easier
extraction of rules).

The extracted rules are compared with some of the related rule extrac-
tion techniques on the basis of some quantitative performance indices. It is
observed that these rules are less in number, yet accurate, and have high
certainty factor and low confusion with less computation time. The investiga-
tion, besides having significance in soft computing research, has potential for
application to large-scale problems involving knowledge discovery tasks [40].
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9
Multimedia Data Mining

9.1 INTRODUCTION

There has been a significant growth in information technology over the last
decade because of the ever-growing power of the computing systems, advances
in data storage management, and tremendous progress in communication tech-
nologies. A conventional information processing system has been mainly based
on alphanumeric data with a very structured data representation, and the type
of computation involved is mainly number crunching in nature. However, rep-
resentation of digital information is no longer restricted in the form of numeric
and alphanumeric data only.

Classically, databases were formed by tuples of numeric and alphanumeric
contents. Today, information processing revolves around different datatypes
in higher-order abstraction of data representation, such as text, document,
image, video, graphics, speech, audio, hypertext, markup languages, etc. The
growth in Internet technologies have added a new dimension to the interactive
usage of these different datatypes as well. Interactive processing and manage-
ment of these different datatypes is another important aspect of multimedia
processing.

There has been tremendous demand in storage and management of multi-
media data over the last decade. Progress in data compression research has
been one of the enabling factors in this direction. A multimedia database
management system stores and manages these large collection of multimedia
datatypes, namely, text, digital image, digital video, graphics, voice, audio,
etc. Popularity of multimedia database systems is increasing, with the growing

319



320 MULTIMEDIA DATA MINING

use of interactive audio-visual systems, digital camera, scanner, CD-ROM, In-
ternet, etc. Multimedia databases fall in the category of very large database
management system. Today's World Wide Web can be considered to be a
distributed multimedia database of the largest size ever used.

Multimedia data are usually semistructured and often very much unstruc-
tured, as compared to numeric and alphanumeric data structures that are
usually dealt with in traditional database management systems. Most of the
classical data mining algorithms and techniques were mainly developed for
mining information from structured data, such as relational, transactional,
and data warehouse data. They had been used typically in financial and
business market analysis, forecast, etc. However, in reality not all datatypes
are very structured, and a substantial amount of information is available as
semistructured or unstructured multimedia data. As a result, retrieval of
multimedia data is challenging [1].

Most of the information in government, business and other institutions are
stored in the form of text databases. As a matter of fact, recent studies show
that more than 80% of company information is stored in the form of textual
documents. Visual information, available in the form of still imagery, video,
and graphics, is a natural medium of communication by humans.

A tremendous amount of visual information is being processed and com-
municated everyday in this digital multimedia age. The medical community
today relies upon the visual information conveyed by the digital medical im-
ages such as X-ray, MRI, CAT/SCAN, etc. Security and surveillance applica-
tions, based on online video and imaging applications, is becoming popular.
Similarly, voice, audio, and speech data contain a huge amount of informa-
tion in digital form as well. As a result, retrieval and mining of information
from multimedia data will have significant impact in the current and future
information age.

It is obvious that development of data mining techniques particularly useful
for multimedia datatypes will continue to be challenging, and there needs to
be focused efforts to influence this area of study. Development of sophistical
data mining technologies for multimedia data could very well be the catalyst
for the next-generation information technology revolution.

In this chapter we provide a study on the developments in multimedia data
mining. Section 9.2 deals with different aspects of text mining. Section 9.3
presents issues in image mining, including color images and content-based
image retrieval. Video mining, encompassing content-based video retrieval
and MPEG standard, is described in Section 9.4. Section 9.5 provides an
introduction to Web mining. Finally, Section 9.6 concludes the chapter.

9.2 TEXT MINING

Text data stored in most of the text databases are usually semistructured and
possibly unstructured. There is a vast amount of information available in text
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or document databases, in the form of electronic publication of books, digital
libraries, electronic mails, electronic media, technical and business documents,
reports, research articles, Web pages in the Internet, hypertext, markup lan-
guages, etc. In order to aid mining of information from large collections of
such text databases, special types of data mining methodologies have been
developed recently. This domain of study is popularly known as ''text mining'
[2]-[4].

Text mining is an emerging area of study, currently under rapid develop-
ment in scientific research. In addition to traditional data mining methodolo-
gies, text mining uses techniques from many multidisciplinary scientific fields
in order to gain insight, understand and interpret, and automatically extract
information from large quantities of text data available in text databases dis-
tributed everywhere. The functionalities of text mining methodologies have
been mainly built on the results of text analysis techniques. Some of the
other areas that have recently influenced text mining are string matching,
text searching, artificial intelligence, machine learning, information retrieval,
natural language processing, statistics, information theory, soft computing,
etc. The Internet search engines, combined with various text analysis tech-
niques, have paved the way for online text mining as well.

9.2.1 Keyword-based search and mining

The search of text databases is different from the search techniques applied
in traditional relational database management systems. A crude way of min-
ing text databases is to apply keyword based searching. In this simplistic
approach the documents are considered to be strings, with a set of keywords
being the signature of the text data and indexed accordingly. A keyword
can be searched inside a text file using string matching techniques, which
may involve exact match or approximate match as explained in Chapter 4.
String-matched keywords or patterns, found inside the text, are then used
to index the documents. After the documents have been identified by the
keywords, traditional data mining techniques (such as classification, cluster-
ing, rule mining, etc.) can be applied with probably some degree of success
depending upon the characteristics of the collection of the documents in the
text database.

There are two major problems with such a simplistic approach that does
not take the semantic meaning of the keywords into consideration. These
two challenging problems are synonymy and polysemy, which have been a
long standing problem in the area of natural language processing. A keyword
provided by the user may not appear at all in the document, whereas the
document may be very much related to the keyword because the same thing
can often be described in different ways in a natural language.

For example, the keyword could be lwoman\ whereas the document may
not exactly contain any instance of the word 'woman1 but contain the word
''lady' frequently. This is known as the synonymy problem. This problem
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can be addressed to some extent by just filtering the document such that
the words of similar meaning are replaced by a chosen canonical token word.
For example, the words 'automobile', 'vehicle', and 'vehicular' can simply
be replaced by the word 'car'. Similarly, the words 'is', 'are', 'am', 'were',
'was', 'been', 'being' can be replaced by the word 'be' when they appear in a
document. However, this is not a very practical proposition, because it is not
possible to maintain a universal list from the dictionary of English language
to form the tokens of such types of words.

It is also possible that the same word may have different meanings in dif-
ferent contexts. For example, the word 'mining' has different meaning in the
context of ''data mining'' as compared to the aspect of ''coal mining''. This is
called the polysemy problem. Hence the success of the natural language pro-
cessing, coupled with other artificial intelligence areas to solve these problems,
will have great influence on text mining in the long run.

9.2.2 Text analysis and retrieval

Text analysis has been a field of study in natural language processing and
information retrieval for quite a while. Since most of the Internet search
techniques are text-based, text analysis also received prominence with the
growth of the Internet.

Usually, text data are semistructured, and easy to read and interpret by
humans. Text analysis techniques can be applied to extract relevant key
features from a text, categorize the text documents based on its semantic
contents, index the documents, extract the overview of large collection of text
documents, organize large collections of documents in efficient ways, improve
the effectiveness of automatic search process, detect duplicate documents in
large text databases, etc.

In full-text retrieval systems, automatic indexing of the documents are
often done based on statistical analysis of the common words and phrases
that appear in the document. One such simple method for automated text
document indexing can be defined by the following steps.

1. Find the unique words in each document hi the document database.

2. Calculate the frequency of occurrence of each of these unique words for
each document in the document database.

3. Compute the total frequency of occurrence of each word across all the
documents in the database.

4. Sort the words in ascending order of their frequency of occurrence in
the database.

5. Remove the words with very high frequency of occurrences from this
sorted list.
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6. Remove the words with low frequency of occurrences from this sorted
list.

7. Use the remaining words as index for the text database.

9.2.3 Mathematical modeling of documents

The text data can be loosely considered as a composition of two basic units,
namely, document and term [2, 5]. In the general sense, a document is a
structured or semistructured segment of a text. For example, this book is a
text document and it is structured in the form of a number of chapters, where
each chapter is composed of sections, and each section may be composed of a
number of subsections and paragraphs, etc. Similarly, an electronic mail can
be considered a document because it contains a message header, title, and
content of the message, in a defined structured fashion. There are many such
documents that exist in practice. Some other examples are source codes, Web
pages, spreadsheets, telephone directory, etc. A term is a word or group of
words or a phrase that exists in a document. Terms are extracted from the
documents using one of the string matching algorithms described in Chapter 4.

We can model a text document using this definition of document and term
[2, 5]. Let us consider a set of N documents D = (di, d2, 6/3, • • • , d^r) and a
set of M terms T = (ti, t-z, £3, • • • , *M)- We can model each document di as a
vector Vi = (vi,i, Vj i2, • • • , Vi,M) in the M-dimensional space RM. The entry
Vij represents a measure of association of the term tj with the document di.
The value of Vij is 0 if the document di does not contain the term tj and is
nonzero otherwise. In simple boolean representation, Vij = I if the term tj
appears in document di. However, this measure is not found to be very robust
in text retrieval. The more popular and practical measure of association (v^j)
is the term frequency, which is simply defined as the number of occurrences of
the term tj in document di. Using this approach, the text is simply modeled
as a document-term frequency matrix as depicted in Fig. 9.1.

In Fig. 9.1, we have shown a 5 x 4 array to represent the document-term
frequency matrix for a set of five documents and four terms. Let us assume
that the selected terms are

• ti = monkey,

• t-2 = bird,

• £3 = flower,

• <4 = sky.

The second row in the matrix is the vector (5, 9, 4, 3) representing the doc-
ument c?2? in which the term monkey appears 5 times, bird appears 9 times,
flower appears 4 times, and sky appears 3 times, respectively.
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9.1 Document-term frequency matrix for five documents and four terms.

It is possible that some of the terms may appear more frequently in the
documents set of many documents than the others. This may represent the
fact that these terms are more important than others in determining the con-
tent of a document. For example, the term 'information' is definitely more
important than the words 'is', 'the', 'are', 'am', 'of, etc. in any English text.
The problem with document-term frequency matrix model is that it does not
capture this phenomena. In order to increase the discrimination power for
these terms, the corresponding term frequencies can be weighted by inverse-
document frequency (IDF). The inverse-document frequency of term tj is
defined by

= 1 + log (9.1)

where N is the number of documents and HJ is the number of documents that
contains the term tj. The IDF favors the terms that appear in more docu-
ments than the others. The discriminating power can further be improved by
updating each entry v^j in the document-term frequency matrix as

*IDFj. (9.2)
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9.2.4 Similarity-based matching for documents and queries

When a document is modeled using the document-term frequency matrix
representation or its variants, as explained above, the relative ordering of
words in the text gets lost. Thereby the syntactic information of formation of
the text, such as the grammar for the sentence structure in English text, also
disappears. In spite of this, the term frequency modeling has been found to
be very effective in a variety of text or document retrieval applications such
as query processing, comparison of documents, document analysis, etc.

Once the document is represented in the matrix model, we can apply a dis-
tance measure to find the similarity of two documents. The simplest approach
is to find the Euclidean distance between the two vectors, corresponding to
the two documents. For example, if we want to search a query document
dq in the document database D = (d\, d%, cfo, • • • , d/v), we first form the
frequency vector vq = (vq,i, vq$, • • • , %M) for the M terms of the term set
T = (£1, £2, £3, • • • , £M)- The Euclidean distance between the query document
dq and the document dj in the document database D is

M

6(dq,di)= TK,;-^)2 • (9-3)

We can also apply other well-defined statistical distance measures [6] (such
as Mahalanobis distance, Manhattan distance, etc.) to find the similarity
between two documents. However, the cosine measure of two vectors has
been found to be very effective in the comparison of two documents. The
cosine measure of two vectors Vi and Vj can be computed as

(9.4)

This is essentially the cosine of the angle between the two vectors. The cosine
measure is nothing but the inner product of the two vectors, after both Vi and
Vj have been normalized to have unity length. As a result, the cosine measure
reflects the relative distribution of the terms in the vectors and this measure
has been found to be very effective in document matching.

Using the numeric values of the above distance measures, we can find the
similarity amongst the documents in a document collection. Similarity-based
indices can be developed for these documents, followed by the application
of traditional data mining techniques for clustering, classification and other
operations on the documents based on these indices.
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Queries can be expressed by the same term-based representation, consid-
ering the query itself as a document formed with a set of terms. As a result,
we can also apply the above principles for query matching in a document.
The query is expressed as a vector of weights corresponding to the terms that
appear in the query, and the weight becomes implicitly zero for those terms
not existent in the query. In its simplest form, the vector can contain weight
one for the terms existing in the query and zero for others. The distance of
the vector is then measured from the vectors corresponding to the documents
in the document database.

The main discrepancy of the above document-term frequency matrix ap-
proach is that it loses the information regarding syntactic relationship amongst
the words in the documents. The other problem with the document-term fre-
quency matrix approach is that a query may contain terms with semantically
same, but physically different terminology, as compared to the terms used to
index a document. For example, the query may contain the term '/ad' whereas
the document may have been indexed by lboyj. Although these two words are
semantically the same, from the similarity perspective they are quite different.

One way to solve this problem is to use a predefined dictionary or knowl-
edge base (a thesaurus or ontology) linking semantically related terms to-
gether. However, such an approach is inherently very subjective regarding
how the terms are related and how similar they are semantically with respect
to the content of a particular database. Moreover, the thesaurus could be pro-
hibitively large to contain all possible cases from English or any other human
language.

In spite of reasonably good similarity measures, the computational require-
ments of the above approach is very high. In most of the practical text doc-
ument databases, the number of terms in the term set could be more than
50,000 and the number of documents could also be very large in the document
database. This makes the dimension of the document-term frequency matrix
very high and prohibitively large for computational requirements. This high
dimensionality also leads the matrix to be very sparse and can further enhance
the difficulty in identifying the terms in the document.

9.2.5 Latent semantic analysis

In order to reduce the dimensionality of a matrix, an efficient technique has
been developed to analyze text based on the popular Singular Value Decom-
position used hi principal component analysis [7, 8]. This technique is called
Latent Semantic Indexing, and the text analysis using this method is called
Latent Semantic Analysis (LSA) [2, 3]. As the name implies, this technique
helps in extracting the hidden semantic structure from the text rather than
just the usage of the term occurrences. LSA also provides a good metric of se-
mantic similarities among documents, based on a term's context. The theory
behind singular value decomposition of a matrix and generation of principal
components has been discussed in detail in Section 3.7.
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The dimensionality of the original document-term frequency matrix F is
often prohibitively large. The Latent Semantic Analysis (LSA) approximates
the original M x N document-term frequency matrix F to a much smaller
matrix of size N x K, using only K principal components generated by the
singular value decomposition (SVD) method described in Section 3.7. In
reality, the value of K can be much smaller than the original dimension N
of the term set. Typical values of N could be 10,000 to 50,000 or more
while K can be in the order of 100 or less, literally without significant loss
of information. The SVD approach exploits the possible redundancy in the
terms of the document.

Let us consider an example to better understand the significance of LSA.
We can assume that the terms such as 'image', 'picture', 'pixel array' can
be expected to contain redundancy in the semantic sense in a document, be-
cause they are quite related and essentially mean the same thing. A text
document discussing about multimedia or image processing aspects may con-
tain all these terms, and they may appear in the document-term frequency
matrix all together. The intuitive logic behind the principal component repre-
sentation of the document-term frequency matrix is that the reduced matrix
may capture semantic relationships among the original terms by creating new
terms that compactly reflect the semantic content of the text document. As
a result, the terms 'image', 'picture', 'pixel array' are effectively mapped into
a single principal component term, and this new term can be considered to
indicate that the document is related to a multimedia or image processing
topic. Hence this term can be used to create an index for the document. If a
query contains the term 'picture', the retrieval system based on this LSA ap-
proach will successfully identify a document related to 'image' or pixel array.
On the other hand, the simple document-term frequency-based approach will
fail to properly identify this situation.

The LSA approach for text indexing employs the transformed document-
term frequency matrix to compare the similarity between two documents by
distance measures (of Section 9.2.4) or to extract a prioritized list of (say, N)
matches for a query. The indices generated through text analysis can be used
to classify the documents. Then association rule mining can be applied to the
terms to discover sets of associated terms, which can be used to distinguish
one class of documents from others.

The text mining process can be broadly separated in two phases, namely,
text refinement and knowledge extraction. In the text refinement phase, the
original unstructured or semistructured text document is transformed into
a chosen intermediate form or model. In the second phase, the knowledge
is then discovered from this intermediate model by extracting patterns and
mining rules.
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9.2.6 Soft computing approaches

Since the free-form text is usually unstructured or semistructured, the appli-
cation of soft computing approaches can be promising to analyze the imprecise
nature of the data and extraction of patterns for knowledge discovery. Re-
cently, there have been some developments in this direction.

Inductive learning, using fuzzy decision tree (Section 5.6), has been de-
veloped for imprecise text mining [9]. A concept relation dictionary and a
classification tree are generated from a random set of daily business reports
database of text classes concerning retailing. In their experiments the authors
use 10,000 evaluation examples, with a decision tree of maximum 90 nodes
(37 intermediate and 53 terminal).

An approach in Ref. [10] uses fuzzy association thesaurus and query ex-
pansion for text retrieval. Fuzzy composition operations like max- mm, max-
product and sum-product are used for constructing the thesaurus. Interactive
query expansion shows the user, upon initial query, a ranked list of documents
suggested by the system based on the fuzzy relation composition. A mea-
sure of similarity helps select the correlated terms using queries with/ without
weight. The experiments use a collection of daily news in Chinese, with 981
homogeneous and 700 heterogeneous text documents.

An HTML document can be viewed as a structured entity, in which doc-
ument subparts are identified by tags and each such subpart consists of text
delimited by a distinct tag. A fuzzy representation of HTML documents is
described in Ref. [11]. The HTML document is represented by a sum of fuzzy
set terms

(9.5)
teT

where the importance of each term t in document d is given by the membership
value

t=i

Wi is the normalized importance weight associated with tagi, n corresponds
to the number of tags, g(.) is a normalization function, and IDFt is the
inverse-document frequency. The significance of an index term is computed by
weighting the occurrence of the term with the importance of the tag associated
with it.

Recommending alternate queries during textual information retrieval is an
important feature in a Web-based search engine, because users often do not
know the exact terms to locate the information relevant to their interests.
Fuzzy ontology is used for query refinement in a domain search engine named
Personalizing Abstract Search Service (PASS) [12]. Fuzzy narrower- and
broader-than term relations are defined using a fuzzy conjunction operator.
Pruning of redundant relations is made by analyzing the sets of relations in-
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volving more than two terms. PASS is used to provide the abstracts of papers
from the IEEE Transactions on Neural Networks journal.

A key issue in text mining is keyword extraction. This allows the automatic
categorization and classification of text documents. Keyword extraction can
be done using clustering methods. Relational Alternating Cluster Estimation
(RACE), based on Levenshtein distance, was used to automatically extract
the 20 most relevant keywords from Internet documents in Ref. [13]. Using
these keywords, corresponding to the cluster centers, a classification rate of
more than 80% could be achieved.

Self-organization of the Web (WEBSOM) [14, 15], based on Kohonen's
SOM (Section 2.2.3.3), has been used for exploring document collections. A
textual document collection is organized onto a graphical map display that
provides an overview of the collection and facilitates interactive browsing. The
browsing can be focused by locating some interesting documents on the map
using content addressing. The excellent visualization capabilities of SOM are
utilized for this purpose.

9.3 IMAGE MINING

Traditional data mining techniques have been developed mainly for structured
datatypes. The image datatype does not belong to this structured category,
suitable for interpretation by a machine, and hence the mining of image data
is a challenging problem. Content of an image is visual in nature and the
interpretation of the information conveyed by an image is mainly subjective,
based on the human visual system.

Image data have been used for machine vision, based on extraction of de-
sired features from an image and interpretation of these features for particular
applications. This is a challenging area of study, and it has been extensively
explored in pattern recognition and machine vision for quite some time. Al-
though interpretation of the image content by the human visual system is a
natural and apparently effortless procedure, it remains a mystery how the hu-
man brain processes this information. Hence modeling the process of human
interpretation of the semantic content of images is still a research challenge.
As a result, it is difficult to define a single set of algorithms or functionalities
that can claim to comprise a complete set of image mining tools.

The research and development of mining image data is relatively new, and
has become an emerging field of study today. Most of the activities in mining
image data have been in the search and retrieval of images based on the
analysis of similarity of a query image or its feature(s) with the entries in the
image database. The image retrieval systems can be broadly categorized into
two categories based on the type of searches, using either description of an
image or its visual content.

In the first category, the images are described based on user-defined texts
[16, 17]. The images are indexed and retrieved based on these rudimentary
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descriptions, such as their size, type, date and time of capture, identity of
owner, keywords, or some text description of the image. As a result, this is
often called description based or text-based image retrieval process. The im-
age indices are predefined based on these descriptions, and they are searched
on these indices when a query is posed as

"find the images from a image database which matches with the given set
of descriptions, e.g. images captured on January 8 to January 12, 1999 and
size bigger than 100 KByte."

The text-based descriptions of the images are usually typed manually for each
image by human operators, because the automatic generation of keywords for
the images is difficult without incorporation of visual information and feature
extraction. As a result, this is a very labor-intensive process and is impracti-
cal in today's multimedia information age. Moreover, since the description of
images are very much subjective, the automated process to generate a text-
based description for indexing of the images could be very inaccurate and
incomplete. In the second category, the query can be posed as

"find the images similar to a given query image."

This second category of similarity based image retrieval process is called Con-
tent Based Image Retrieval (CBIR) [18]-[22]. In CBIR systems, the images
are searched and retrieved based on the visual content of the images. Based
on these visual contents, desirable images features can be extracted and used
as index or basis of search. Content-based image retrieval is highly desirable
and has increasingly become a growing area of study towards the successful
development of image mining techniques.

9.3.1 Content-Based Image Retrieval

There are, in general, three fundamental modules in a content-based image
retrieval system. These are

1. Visual content or feature extraction,

2. Multidimensional indexing, and

3. Retrieval.

The images in an image database are indexed-based on extracted inherent
visual contents (or features) such as color, texture, pattern, image topology,
shape of objects and their layouts and locations within the image, etc. An
image can be represented by a multidimensional vector of the extracted fea-
tures from the image. The feature vector actually acts as the signature of the
image. This feature vector can be assumed to be associated to a point in the
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Fig. 9.2 Architecture of a Content Based Image Retrieval System.

multidimensional space. As an example, an image can be represented by an
TV-dimensional feature vector whose first n\ components may represent color,
the next n-i components may represent shape, the following 713 components
may represent some image topology, and finally 714 components may represent
texture of the image, so that there are N = n\ + n^ + 713 -I- n± components. As
a result, an example image can simply be used as a query using visual content
based indexing.

The query image can be analyzed to extract the visual features and can
be compared to find matches with the indices of the images stored in the
database. The extracted image features are stored as meta-data, and images
are indexed based on these meta-data information. This meta-data informa-
tion comprises some measures of the extracted image features. The feature
vectors of similar images will then be clustered in the TV-dimensional space.
Retrieving similar images to a query image then boils down to finding the
indices of those images in the TV-dimensional search space whose feature vec-
tors in the TV-dimensional space are within some threshold of proximity to
the point of the query image. This indexing structure is popularly known as
Multidimensional Access Structure (MAS) [23].

The architecture for a possible content based image retrieval system is
shown in Fig. 9.2. The CBIR systems architecture is essentially divided into
two parts. In the first part, the images from the image database are processed
off-line. The features from each image in the image database are extracted to
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form the meta-data information of the image, in order to describe the image
using its visual content features. Next these features are used to index the
image, and they are stored into the meta-data database along with the images.
In the second part, the retrieval process is depicted. The query image is
analyzed to extract the visual features, and these features are used to retrieve
the similar images from the image database. Rather than directly comparing
two images, similarity of the visual features of the query image is measured
with the features of each image stored in the meta-data database as their
signatures. Often the similarity of two images are measured by computing
the distance between the feature vectors of the two images. The retrieval
systems returns the first k images, whose distance from the query image is
below some defined threshold.

Several image features have been used to index images for content-based im-
age retrieval systems. Most popular amongst them are color, texture, shape,
image topology, color layout, region of interest, etc. We discuss some of these
features in greater detail in the following sections.

9.3.2 Color features

Color is one of the most widely used visual features in content based image
retrieval [24]-[27]. While we can perceive only a limited number of gray lev-
els, our eyes are able to distinguish thousands of colors and a computer can
represent even millions of distinguishable colors in practice. Color has been
successfully applied to retrieve images, because it has very strong correlations
with the underlying objects in an image. Moreover, color feature is robust
to background complications, scaling, orientation, perspective, and size of an
image. A color pixel in a digital image is represented by three color chan-
nels (usually Red, Green and Blue). It is well known that any color can be
produced by mixing these three primary colors.

Although we can use any color space for computation of a color histogram
HSV (Hue, Saturation, and Value), HLS (Hue, Lightness, and Saturation),

CIE color spaces (such as CIELAB, CIELUV) [28] were found to deliver better
results as compared to the RGB space. Since these color spaces are visually
(or perceptually) uniform compared to the RGB, they are found to be more
effective to measure color similarities between images. We describe here the
HSV color space, because that is widely used in the CBIR community. In the
HSV color space,

• Hue of a color represents the relative color appearance; that is, 'redness',
'greenness,' and so on,

• Value indicates the darkness of the color (or the perceived illuminance),
and

• Saturation represents the strength of the color.
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Cyan Red

Fig. 9.3 Perceptual representation of HSV color space.

The perceptual representation of the HSV color space has a conical shape,
as shown in Fig. 9.3. The 'Value' (V) varies along the vertical axis of the
cone, the 'Hue' (H) varies along the periphery of the circle of the cone and is
represented as an angle about the vertical axis, and the 'Saturation' (5) varies
along the radial distance as shown in Fig. 9.3. We have shown the vertices a
hexagon on the periphery of the circle in Fig. 9.3 to show six colors separated
by 60° angles. Red is at 0° (coincides with 300°), Yellow at 60°, Green at
120°, Cyan at 180°, Blue at 240°, and Magenta at 300°. The complementary
colors are 180° apart. For example, Blue and Yellow are the complementary
colors. Apex of the cone (V = 0) represents 'Black'. Again, V = 1 and 5 = 0
represents 'White'. The colors have their maximum luminosity (V = 1) at
the periphery of the circle. V = 1 and 5=1 represent the 'pure' hues for any
color.

If the red, green, and blue component values of a color pixel in the RGB
space are R, G, and B respectively, they can be linearly normalized to fractions
r, g, and b in the range [0, 1] and these normalized values r, 0, and b are used
to transform into the HSV space. Transformation of RGB to HSV color space
can be accomplished by the following set of equations [28]:

V = (9.6)
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5 = (9.7)
V -

r o if 5 = 0

if V = r

60*
(9.8)

60 * U + £$] if V = 6,
L J

= # + 360 i f # < 0 . (9.9)

9.3.2.1 Color histogram: This is the most commonly used color feature in
CBIR [24, 25]. Color histogram has been found to be very effective in charac-
terizing the global distribution of colors in an image, and it can be used as an
important feature for image characterization. To define color histograms, the
color space is quantized into a finite number of discrete levels. Each of these
levels becomes a bin in the histogram. The color histogram is then computed
by counting the number of pixels in each of these discrete levels. There are
many different approaches to quantize a color space to determine the number
of such discrete levels [24]-[26].

Using the color histogram, we can find the images that have similar color
distribution. One can think of the simplest measure of similarity by com-
puting the distance between two histograms. Let us consider that H^ =
{h(i\h£\ • • • , h ( K } and H™ = {h(*\ h(^\ • • • , h™} are two feature vectors

(i) ,(2)generated from the color histograms of two images, where hj and hj are
the count of pixels in the jih bin of the two histograms respectively, and K
is the number of bins in each histogram. We can define a simple distance
between two histograms as

K
,(2) I (9.10)

There is another popular distance measure between two histograms, popu-
larly known as histogram intersection. The histogram intersection is the total
number of pixels common to both the histograms. This can be computed as

K
(9.11)

The above equations can be normalized to maintain the value of the distance
measure in the range [0, 1]. To normalize J(F(1),#(2)), it is divided either
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Partitioning the color histogram with coherence and noncoherence pixel

by the total number of pixels in one of the histograms or by the size of the
image.

9.3.2.2 Color coherence vector: One problem with the above color histogram-
based similarity measure approach is that the global color distribution doesn't
reflect the spatial distribution of the color pixels locally in the image. This
cannot distinguish whether a particular color is sparsely scattered all over the
image or it appears in a single large region in the image.

The color coherence vector [27]-based approach was designed to accommo-
date the information of spatial color into the color histogram. Here we can
classify each pixel in an image, based on whether it belongs to a large uniform
region or not. For example, we can consider a region to be uniformly colored
if it consists of the same color and the area of the region is above a certain
threshold (say, 2%) of the whole image area. We refer to the pixels in these
regions as coherent pixels.

In this approach, each histogram bin is divided into two parts. One contains
the count of pixels belonging to a large uniformly colored region and the other
contains the same colored pixels belonging to a sparse region. Let us consider
that the ith bin of the histogram contains PJ coherent pixels and QJ incoherent



356 MULTIMEDIA DATA MINING

pixels. Using this partition, the color coherence vector of an image can be
expressed as {(pi,gi), (^2,92), • • • > (PK, <ZK)}- We have shown this in Fig. 9.4.
It should be noted that {p\ + qi,p2 + <Z2? • • • ,PK + QK} is the original color
histogram without this distinguishing power. The color coherence vectors
provide superior retrieval results with this additional distinguishing capability,
as compared to the global color histogram method [27].

9.3.2.3 Color moment: This is a compact representation of the color feature
to characterize a color image [25]. It has been shown that most of the color
distribution information is captured by the three low-order moments. The
first-order moment (/i) captures the mean color, the second-order moment
(cr) captures the standard deviation, and the third-order moment captures
the skewness (0) of color. These three low-order moments (p,c, ffc, Oc] are
extracted for each of the three color planes, using the following mathematical
formulation.

- M N

Vc^TTTrY.Ytfi, (9-12)

ffr. =

M N

MN

M N

MN

(9.13)

(9.14)

where p^ is value of the cth color component of the color pixel in the ith
row and jth column of the image. As a result, we need to extract only nine
parameters (three moments for each of the three color planes) to characterize
the color image. Weighted Euclidean distance between the color moments of
two images has been found to be effective to calculate color similarity [25].

9.3.2.4 Linguistic color tag: The global color distribution using color his-
togram does not take advantage of the fact that the adjacent histogram bins
might actually represent roughly the same color, because of the limited ability
of the human perceptual system. Moreover, only a limited number of color
shades are sufficient for visual discrimination between two images. To take
advantage of this, a color matching technique based on linguistic tags, to iden-
tify a color with a name, has been proposed recently [29]. The concept behind
this technique is to construct equivalence classes of colors, which are identified
by linguistic tags (or color name such as pink, maroon, etc.) that perceptu-
ally appear the same to the human eye but are distinctly different from that
of neighboring subspaces. Using this approach, the dimensionality of color
features are significantly reduced. This also helps to reduce computations
for color similarity measures. A color palette of 15 colors corresponding to
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15 equivalent classes were developed by Iqbal and Aggarwal, using this tech-
nique, and was applied effectively in color similarity measure to distinguish
color images [29].

9.3.3 Texture features

Texture is a very interesting image feature that has been used for character-
ization of images, with application in content-based image retrieval. There
is no single formal definition of texture in the literature. However, a major
characteristic of texture is the repetition of a pattern or patterns over a region
in an image. The elements of patterns are sometimes called textons. The
size, shape, color, and orientation of the textons can vary over the region.
The difference between two textures can be in the degree of variation of the
textons. It can also be due to spatial statistical distribution of the textons
in the image. Texture is an innate property of virtually all surfaces, such as
bricks, fabrics, woods, papers, carpets, clouds, trees, lands, skin, etc. It con-
tains important information regarding underlying structural arrangement of
the surfaces in an image. When a small area in an image has wide variation of
discrete tonal features, the dominant property of that area is texture. On the
other hand, the gray tone is a dominant property when a small area in the
image has very small variation of discrete tonal features. Texture analysis has
been an active area of research in pattern recognition since the 1970s [30, 31].

A variety of techniques have been used for measuring textural similarity. In
1973, Haralick et al. proposed co-occurrence matrix representation of texture
feature to mathematically represent gray level spatial dependence of texture
in an image [30]. In this method the co-occurrence matrix is constructed based
on the orientation and distance between image pixels. Meaningful statistics
are extracted from this co-occurrence matrix, as the representation of texture.
Since basic texture patterns are governed by periodic occurrence of certain
gray levels, co-occurrence of gray levels at predefined relative positions can
be a reasonable measure of the presence of texture and periodicity of the
patterns.

Several texture features such as entropy, energy, contrast, and homogene-
ity, can be extracted from the co-occurrence matrix of gray levels of an image
[32]. The gray level co-occurrence matrix C(ij) is defined by first specifying a
displacement vector dX)I/ = (6x, 6y) and then counting all pairs of pixels sepa-
rated by displacement dx>y and having gray levels i and j. The matrix C(i j)
is normalized by dividing each element in the matrix by the total number of
pixel pairs. Using this co-occurrence matrix, the texture features metrics are
computed as follows [32].

Entropy = - < ? ( * , j) log C(»,j), (9.15)
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Energy = C2(U), (9.16)
» 3

Contrast = ̂  2Ji ~ •?') C(«, ̂ '). (9-17)
» j

Homogeneity = . (9.18)

Practically, the co-occurrence matrix C(«, j) is computed for several values of
displacement dx,y, and the one which maximizes a statistical measure is used.

Tamura et al. proposed computational approximations to the texture fea-
tures, based on the psychological studies in visual perception of textures [31] .
The texture properties they found visually meaningful for texture analysis
axe coarseness, contrast, directionality, linelikeness, regularity, and roughness.
These texture features have been used in many content based image retrieval
systems [18, 19]. Popular signal processing techniques have also been used in
texture analysis and extraction of visual texture features. Wavelet transforms
(Section 2.2.7) have been applied in texture analysis and classification of im-
ages, based on multiresolution decomposition of the images and representing
textures in different scales [33]-[36]. Amongst the different wavelet filters,
Gabor filters were found to be very effective in texture analysis.

9.3.4 Shape features

Shape is another image feature applied in CBIR. Shape can roughly be defined
as the description of an object minus its position, orientation and size. There-
fore, shape features should be invariant to translation, rotation, and scale, for
an effective CBIR, when the arrangement of the objects in the image are not
known in advance. To use shape as an image feature, it is essential to seg-
ment the image to detect object or region boundaries; and this is a challenge.
Techniques for shape characterization can be divided into two categories.

The first category is boundary-based, using the outer contour of the shape of
an object. The second category is region-based, using the whole shape region
of the object. The most prominent representatives of these two categories are
Fourier Descriptors [37] and Moment Invariants [38]. The main idea behind
the Fourier Descriptors is to use the Fourier-transformed boundaries of the
objects as the shape features, whereas the idea behind Moment Invariants
is to use region-based geometric moments that are invariant to translation
and rotation. Hu identified seven normalized central moments as shape fea-
tures, which are also scale invariant. We provide expressions for these seven
invariants below.
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x y

for p, q = 0,1,2, — The central moments are expressed as

9.3.4.1 Moment invariants Let F(x, y) denote an image in the two-dimensional
spatial domain. Geometric Moment [39]-[41] of order p + q is denoted as

(9.19)

(9.20)

where xc = •^s-, yc — 7^7^ and (xc, yc) is called the center of the region or
object. Hence the Central Moments, of order up to 3, can be computed as

1*0,0 —

01,0 = 0
00,1 = 0
02,0 =
00,2 =

x y

03,0 = 7713,0 —
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The normalized central moments, denoted 7/p,9, are denned as

(9.21)

(9.22)

where

7 = (9.23)

for p + q = 2,3, — A set of seven transformation invariant moments can be
derived from the second- and third-order moments as follows.

0i = (772,0 4 770,2)

4- »?it2)2 - 3(r;2)i 4- 7?o,

03 = (773,0 — 3r7i,2)
2

04 = (773,0 4 771,2)
2 -

06 = (772,0 - 77o,2)[(773,0 4 7/i,2)
2 - (T72.1 4 77o,3)2]

441/1,1(1/3,0 4 T/i,2)(r/2i 4 7/03)
07 = (3772,i - 770,3X773,0 4 77i,2)[(773,o 4 77i,2)2 - 3(772,i 4 7/o,3)2]

4(37/1,2 - 773,0X772,1 4 770,3)[3(7/3,0 4 77i,2)
2 - (7/2,1 4 77o,3)

2]. ,
(9.24)
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This set of normalized central moments is invariant to translation, rotation,
and scale changes in an image.

In addition to the geometric moments, the circularity, aspect ratio, sym-
metricity, and concavity are also used for segmentation and shape detection
in images [42]. We exclude detailed discussions on these features here.

The problem with shape-based CBIR system development is that the shape
features need very accurate segmentation of images to detect the object or
region boundaries. Image segmentation is an active area of research and most
of the segmentation algorithms are still computationally very expensive for
on-line image segmentation. Robust and accurate segmentation of images
still remains a challenge in computer vision. As a result, shape feature based
image retrieval has been mainly limited to image databases where objects or
regions are readily available.

9.3.5 Topology

A digital image can be represented by one or more topological properties [40],
which typically represent the geometric shape of an image. The interesting
characteristic of topological properties is that when changes are made to the
image itself, such as stretching, deformation, rotation, scaling, translation,
or other rubber-sheet transformations, these properties of the image do not
change. As a result, topological properties can be quite useful in characteri-
zation of images and can be used as a signature of an image content to use in
content based image retrieval.

One topological property of a digital image is known as Euler number [40].
The Euler number is usually computed in a binary image. However, it can
be extended to characterize gray-tone images as well by defining a vector of
Euler numbers of the binary planes of the gray-tone image. This has been
called the Euler Vector [43]. The Euler number is defined as the difference
between number of connected components and number of holes in a binary
image. Hence if an image has C connected components and H number of
holes, the Euler number E of the image can be defined as

E = C-H. (9.25)

The Euler number of the binary image in Fig. 9.5(a) is 0 because the image
has one connected component and one hole, whereas the Euler number of
Fig. 9.5(b) is 2 because it has seven connected components and five holes.
The binary image of letter B will have Euler number —1 because it has one
connected component and two holes.

The Euler number remains invariant despite the transformation of the im-
age due to translation, rotation, stretching, scaling, etc. For some classes of
digital images, Euler numbers have strong discriminatory power. In other
words, once the Euler number for a particular digital image is known, the dig-
ital image may readily be distinguished from other digital images in its class.
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(a) (b)

Fig. 9.5 Sample binary images with (a) Euler number 0 and (b) Euler number 2.

This implies that the Euler number may be used for more efficient searching
or matching of digital images. For example, the Euler number may be used
in medical diagnosis such as the detection of malaria infected cells. As the
Euler number of an infected cell is often different from that of a normal cell,
the malaria infected cells may be identified by calculating the Euler number
of each cell image. The Euler number may also be used for image searching,
such as in a database of logo images.

9.3.5.1 Euler Vector Bishnu et al. [43] extended the above usage of Euler
number to gray-tone images, by defining a vector of Euler numbers. This
vector is called the Euler Vector. Intensity value of each pixel in an 8-bit gray-
tone image can be represented by an 8-bit binary vector 6j, i = 0,1, • • • , 7,
that is, (67, 6e, &s, 64, 63, 62, &i) &o), where 6, e {0,1}. The ith bit plane is
formed with &i's from all the pixels in the gray-tone image. To define Euler
vector, we retain the first four most significant bit planes corresponding to
(67,65,65,64), because they contain most of the information of the image.
This 4-bit binary vector is converted to its corresponding reflected gray code
(97,96,95,94), where g7 = 67, g6 = 67®66, g$ = 66(g)65, p4 = 65®64, and
(g) denotes the binary XOR (modulo-2) operation.



342 MULTIMEDIA DATA MINING

9.3.5.2 Definition Euler vector of a gray-tone image is a 4-tuple (£7, £5,
£5, £4), where Ei is the Euler number of the bit-plane formed with reflected
gray codes <fc of all the pixels in the image.

Gray code representation of intensity values offers a distinct advantage
over standard binary representation in this particular context. Euler vector
is found to be more insensitive to noise and other changes, when the gray
code is used. This happens because two consecutive numbers have unit Ham-
ming distance in gray-code representation and, for most of the cases, a small
change in intensity values cannot affect all the 4 bit planes simultaneously in
gray representation. The Euler vector can be used as a quick combinatorial
signature of an image and has been used for image matching in content-based
image retrieval [43, 44].

9.3.6 Multidimensional indexing

Multidimensional indexing is an important component of content-based im-
age retrieval. Development of indexing techniques has been an active area
in database management, computational geometry, and pattern recognition.
However, the notion of indexing has subtle difference in different communities.
The notion of indexing in multimedia data mining and content-based image
retrieval is different than its notion in the traditional database management
systems. In traditional database management system (particularly for rela-
tional database), the indexing refers to the access structure of the database
files in terms organization of the records. Indexes are specified based on one
or more attributes of the records in order to process queries based on those at-
tributes. These record and file structures are well organized and supported by
an access structure such as hashing, B-tree, etc. In the information retrieval
community, the indexing mechanism is concerned with the process to assign
terms (or phrases or keywords or descriptors) to a document so that the doc-
ument can be retrieved based on these terms. The indexing in content-based
image retrieval or mining multimedia data is similar to the notion adopted
in the information retrieval. The primary concern of indexing is to assign a
suitable description to the data in order to detect the information content
of the data. As we explained in the previous sections, the descriptors of the
multimedia data are extracted based on certain features or feature vector of
the data. These content descriptors are then organized into a suitable access
structure for retrieval.

The key issues in indexing for content-based image retrieval are (i) reduc-
tion of high dimensionality of the feature vectors, (ii) finding an efficient data
structure for indexing, and (iii) finding suitable similarity measures.

In CBIR, the dimensionality of features vectors is normally very high. To-
day the dimensionality is typically of the order of 102. With the exploration
of multimedia content, this order may grow in future. Before indexing, it is
very important to reduce the dimensionality of the feature vectors. The most
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popular approach to reduce high dimensionality is application of the principal
component analysis, based on singular decomposition of the feature matrices.
The theory behind singular value decomposition of a matrix and generation
of principal components for reduction of high dimensionality has been dis-
cussed in detail in Section 3.7. The technique has also been elaborated in
Section 9.2.5 with regard to text mining. This can be applied to both text
and image datatypes in order to reduce the high dimensionality of the feature
vectors and hence simply the access structure for indexing the multimedia
data.

After dimensionality reduction, it is very essential to select an appropriate
multidimensional indexing data structure and algorithm to index the feature
vectors. There are a number of approaches proposed in the literature. The
popular amongst them are multidimensional binary search trees [45], R-Tree
[46], variants of R-Tree such as fl'-Tree [47], SR-tree [48], SS-tree [49], Kd-
tree [50], etc. All these indexing methods provide reasonable performance
for dimensions up to around 20, and the performance deteriorates after that.
Moreover, most of these tree-based indexing techniques have been designed for
traditional database queries such as point queries and range queries, but not
for similarity queries for multimedia data retrieval. There have been some
limited efforts in this direction. Multimedia database indexing particularly
suitable for data mining applications remain a challenge. So exploration of
new efficient indexing schemes and their data structure will continue to be a
challenge for the future.

After indexing of images in the image database, it is important to use a
proper similarity measure for their retrieval from the database. Similarity
measures based on statistical analysis have been dominant in CBIR. Distance
measures such as Euclidean distance, Mahalanobis distance, Manhattan dis-
tance [6], and similar techniques have been used for similarity measures. Dis-
tance of histograms and histogram intersection methods have also been used
for this purpose, particularly with color features.

Another aspect of indexing and searching is to have minimum disk latency
while retrieving similar objects. Chang et al. proposed a clustering technique
to cluster similar data on disk to achieve this goal, and they applied a hashing
technique to index the clusters [51]. In spite of lots of development in this
area, finding new and improved similarity measures still remains a topic of
interest in computer science, statistics, and applied mathematics.

9.3.7 Results of a simple CBIR system

Sana et al. proposed a simple image matching scheme for an experimental
content-based image retrieval system that uses moment, shape, and texture
features extracted from the images [42]. The shape features have been ex-
tracted using moment computation (feature set A) of the regions, combined
with circularity, aspect ratio, concavity, and symmetricity metrics (feature
set B). The texture of the images have been generated using the energy,
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Table 9.1 CBIR match performance (%)

Image group
AEROPLANE
CAR
FLOWER
ANIMAL
Overall

A
71.3
78.90
51.22
25.44
62.70

B
69.68
74.11
38.64
48.45
38.90

A+B
73.39
78.30
43.64
48.89
64.80

A+B+C
73.23
82.56
43.48
49.56
66.55

A: Moment invariants only.
B: Circularity, symmetricity, aspect ratio and concavity.
C: Energy, entropy, contrast and homogeneity.

entropy, contrast, and homogeneity measure as image features (set C). We
present here results of this system using around 290 samples taken from an
image database containing several classes of images, including animals, cars,
flowers, etc. Distance of the query image from the database images have been
computed simply as £^ | fi — f- |, where fi and // are the values of the
ith feature of the database image and query image respectively. The top ten
closest images have been taken as the query result, excluding the query image
itself if it is present in the database.

Table 9.2 CBIR weighted match performance (%)

Image
group
AEROPLANE
CAR
FLOWER
ANIMAL
Overall

All features
(No weight)

73.23
82.56
43.48
49.56
66.55

All features
(With weight)

69.84
86.75
77.03
72.44
77.79

Tables 9.1 and 9.2 provide the results, where each database image is used
as a query image to find the top ten from the database. Prom Table 9.1, we
observe that the overall performance can be improved by mixing the different
feature sets for image query.

Further improvement can be achieved by assigning weights to each feature
as follows:
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where Wgi is the weight of the ith feature for image group g and the database
image belongs to image group g. Here Wgi is computed as t +

1
g , where crgi

is the standard deviation of the ith feature value of the images in group g.
Table 9.2 indicates that this improves the matching performance.

The summary of the results is presented in Fig. 9.6 for eight query images.
In each row the first column indicates the query image. For all rows the five
best matches are shown, with the query image (as all of them are present in
the database) naturally coming first as the best match.

9.4 VIDEO MINING

Currently text-based search engines are commercially available, and they are
predominant in the World Wide Web for search and retrieval of information.
However, demand for search and mining multimedia data based on its content
description is growing. Search and retrieval of contents is no longer restricted
to traditional database retrieval applications. As an example, it is often re-
quired to find a video clip of a certain event in a television studio. In the
future the content customers will demand to search and retrieve video clips
based on content description in different forms. It is not difficult to imagine
that one may want to mine and download the images or video clips containing
the presence of Mother Teresa from the Internet or search and retrieve them
from a video archival system. It is even possible to demand for retrieval of a
video which contains a tune of a particular song.

In order to meet the demands for retrieval of audio-visual contents, there
is a need of efficient solution to search, identify and filter various types of
audio-visual content of interest to the user using non-text based technolo-
gies. Recognizing this demand, the MPEG (Moving Picture Expert Group)
standard committee, under the auspices of the International Standard Or-

ganization, is engaged in a work item to define a standard for multimedia
audio-visual content description interface [52]. JPEG2000 is the new stan-
dard for still picture compression and has been developed in such a way that
metadata information can be stored in the file header for access and retrieval
by users as well [53, 54]. There is a mode in JPEG2000 standard which
particularly focuses on compressing moving pictures or video and its content
description.

All these developments will influence effective mining of video data in the
near future. Video mining is yet to take off as a mainstream active area of
research and development by the data mining community. The development
has so far been restricted to retrieval of video content only. However, there are
ample opportunities that data mining principles can offer in conjunction with
the video retrieval techniques, towards the successful development of video
data mining. In order to influence the readers towards this direction, we
present here a brief description of the MPEG-7 standard for multimedia con-
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tent description interface and a general discussion on a possible video retrieval
system. Application of data mining techniques on top of this development is
left to the readers for their imagination.

9.4.1 MPEG-7: Multimedia content description interface

There is a wrong notion amongst many of us that MPEG-7 is another video
compression standard. However, adoption of data compression principles are
essential to define this standard for compact description of the multimedia
contents. The goal of the MPEG-7 activity is not to define another video com-
pression standard. The purpose of this standardization activity is to specify
a standard set of descriptors that can be used to identify content and per-
mit search for a particular multimedia content in a multimedia information
system.

The goal of MPEG-7 is to define a standard set of descriptors that can
be used to describe various types of multimedia information, as well as the
relationship between the various descriptors and their structures. In principle
these descriptors will not depend on the way the content is available, either on
the form of storage or on their format. For example, video information can be
encoded with any compression scheme (MPEG-1, MPEG-2, MPEG-4, JPEG,
JPEG2000, or any other proprietary algorithm) or it can be uncompressed
in its raw format without any encoding. It is even possible to generate a
description of an analog video, or a picture drawn on paper. The audio-
visual data description in MPEG-7 may include still pictures, video, graphics,
audio, speech, three-dimensional models, and information about how these
data elements are combined in the multimedia presentation.

The top level scope of the MPEG-7 standard is shown in Fig. 9.7. The block
diagram emphasizes that only the audio-visual description of multimedia data
is meant to be standardized. The standard neither defines nor deals with
the mechanism for extraction of features from the multimedia data, nor is it
connected with its encoding or search and retrieval mechanism. Accordingly,
the MPEG committee was chartered to standardize the following elements as
described in the requirement document for MPEG-7 work item [55]:

1. A set of descriptors - A descriptor is a representation of a feature, such
as color, shape, texture, image topology, motion, or title, to name a few.
The descriptor defines the syntax and semantics of representation of the
feature.

2. A set of description schemes - A description scheme specifies the struc-
ture and semantics of the relationships between its components, which
may be both descriptors and description schemes as well.

3. A set of coding schemes for the descriptors.

4. A Description Definition Language (DDL) to specify the description
schemes and descriptors.
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Fig. 9.7 Scope of the MPEG-7 standard.

The goal of MPEG-7 work item is a tall order. The final output of the
standard is yet to be seen.

9.4.2 Content-based video retrieval system

Content-based image retrieval techniques can be extended, in principle, to
video retrieval systems. However, this is not very straightforward because
of the temporal relationship of video frames and their inherent structure. A
video is not only a sequence of pictures, it represents the actions and events
in a chronological order to convey a story and represent a moving visual
information. In other words, one may argue that each video clip can be
considered as a sequence of individual still pictures and each individual frame
can then be indexed and stored using the traditional content-based image
retrieval techniques. Again, this is not very practical given the number of
frames in a good quality video clip of even a few minutes. This also does not
capture the story structure, which is a collection of actions and events in time.

A generic video retrieval system, which can fit in MPEG-7 model, is shown
in Fig. 9.8. As shown in this figure, a video clip is first temporarily segmented
into video shots. A shot is a piece of a video clip (i.e., a group of frames
or pictures), where the video content from one frame to the adjacent frames
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Fig. 9.8 Video retrieval systems architecture.

does not change abruptly. One of these frames in a shot is considered to
be a key frame. This key frame is considered to be a representative for the
picture content in that shot. Sequence of key frames can define the sequence
of events happening in the video clip. This is very useful to identify the type
and content of the video. Detection of shots and extraction of the key frames
from video clips is a research challenge [56, 57].

As an individual still picture, each key frame can be segmented into a num-
ber of objects with desired meaningful image features such as shape, texture,
color, topology, and many others as defined in Section 9.3 for content-based
image retrieval. The semantic relationship between these individual features
or feature vectors defines an object of interest to the user. We can apply
similar feature extraction techniques and generate index structures for the
key frames using the feature vectors, as described for content-based image
retrieval. These indexed feature data and the corresponding key frames are
stored in the metadata database. Collection of these metadata information
describes the content of the video clip.

In a video retrieval system, the query processing depends upon the appli-
cations. It can be similar to content-based image retrieval, as described in
Section 9.3, or it can be more complex depending upon the type of query pro-
cessing. In its simplest form, a picture can be supplied to the video retrieval
system as a query image. This query image is then matched with each and
every key frame stored in the metadata database. The matching technique is
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repeated, based on the extraction of different features from the query image,
followed by the matching of these features with the stored features of the key
frames in the database. Once a match of the query picture with a key frame
is found, the piece of video can be identified by the index of the key frame
along with the actual shot and the video clip.

Success of the MPEG-7 standardization process will have a significant im-
pact in multimedia and video content retrieval and will influence the future
development of multimedia data mining on a standardized platform based on
its definition.

9.5 WEB MINING

World Wide Web is the largest database that ever existed. It serves as a
widely distributed data or information repository system to warehouse dif-
ferent datatypes. Extraction of information and knowledge discovery from
World Wide Web is an important area of study. The problem for knowledge
extraction from World Wide Web is even more challenging because the data
stored in the Web is very dynamic in nature, and constantly changing due
to continuous update of the existing data or Web pages and addition of new
information every moment. The complexity of Web pages is greater than that
of traditional text document databases. Web data is often composed of dif-
ferent multimedia datatypes, mixed and sometimes interspersed together. As
a result, Web mining will remain to be a challenge in the coming years.

Web mining [58] uses data mining techniques to automatically retrieve,
extract, and evaluate information for knowledge discovery from the Web. Al-
most 99% of the data in the Web is useless for a particular user, and often it
does not represent any relevant information that the user is looking for. Tak-
ing into account the huge amount of data storage and manipulation needed
for (say) a simple query, the processing essentially requires adequate tools
suitable for extracting only the relevant, sometimes hidden, knowledge as the
final result of the problem under consideration.

The subtle difference between data mining and Web mining suggests the
use of new or modified tools and algorithms for appropriate handling of the In-
ternet. Web mining typically addresses semistructured or unstructured data,
like Web and log files with mixed knowledge involving multimedia, flow data,
etc., often represented by imprecise or incomplete information.

Web mining can be broadly categorized as

1. Web Content Mining of multimedia documents, involving text, hyper-
text, image, audio, and video. This deals with the extraction of concept
hierarchies or relations from the Web, along with their automatic cate-
gorization.
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Fig. 9.9 A Web mining taxonomy.

2. Web Structure Mining of interdocument links, provided as a graph of
links in a site or between sites. For example, in Google a page is impor-
tant if important pages point to it.

3. Web Usage Mining of the data generated by the users' interactions with
the Web, typically represented as Web server access logs, user profiles,
user queries, and mouse-clicks. This includes trend analysis (of the Web
dynamics information) and Web access association or sequential pattern
analysis.

Fig. 9.9 provides a taxonomy for Web mining [59]. The different functions
falling under the three major categories are highlighted. Web mining typically
encompasses ways of improving search or customization by (i) learning about
the users interests based on access patterns, (ii) providing users with pages,
sites, and advertisements of interest, and (iii) using XML to improve search
and information discovery on the Web.

9.5.1 Search engines

Web search engines are programs written to query and retrieve information
stored in databases (fully structured), HTML pages (semistructured) and free
text (unstructured) on the Web. The most popular indices have been created
by Web robots such as AltaVista and WebCrawler, which scan millions of
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Web documents and store an index of the words in the documents. There
are over a dozen different indices currently in active use, each with a unique
interface and a database covering a different fraction of the Web. Some of
these indices have been discussed, with respect to text mining, in Section 9.2.

MetaCrawler presents the next level of the information food chain, by pro-
viding a single unified interface for Web document searching [60]. It submits
the query to nine indices in parallel, and then it collates the results and
prunes them. Thus instead of tackling the Web directly, MetaCrawler mines
robot-created searchable indices.

Future resource discovery systems will make use of automatic text cate-
gorization technology to classify Web documents into categories. This tech-
nology could facilitate the automatic construction of Web directories, such
as Yahoo, by discovering documents that fit Yahoo categories. Alternatively,
the technology could be used to filter the results of queries to searchable in-
dices. For example, in response to a query such as "find me product reviews
of Encarta," a discovery system could take documents containing the word
"Encarta" found by querying searchable indices and then identify the subset
that corresponds to product reviews.

It often happens that, upon matching the user's query with locally cached
documents or those in remote Web sites, the search engine comes up with
too many poorly matched documents. Some Web search algorithms, such as
Hyperlink Induced Topic Search (HITS) and PageRank, rank these matched
documents according to some content criteria like structural information of
hyperlinks. Thereby, the best fits of the ranked matches can be presented to
the user.

There are two important types of Web pages, namely,

• authorities, providing the best source of information about a given topic,
and

• hubs, providing a collection of links to authorities.

The hyperlink structure connects the different pages of the Web. A good hub
is a page that points to several good authorities, while a corresponding good
authority is a page that is pointed to by many good hubs. HITS works on
this mutually reinforcing relationship by searching for good hubs and good
authorities.

The HITS algorithm proceeds by

1. sampling, where it generates a focused collection of Web pages that are
likely to be rich in relevant information, and

2. weight propagation, where an iterative procedure is pursued to determine
an estimate of the hubs and authorities in order to obtain the most
relevant hubs and authorities.

The Web is considered as a directed graph of pages. HITS initially constructs
a subgraph based on the query terms, using a root set of pages generated by
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some index-based search engine. The goal is to generate a subgraph rich in
relevant and authoritative pages. The root set is expanded to a base set by
including all pages that are linked to from here, but limited by a prespecified
cutoff size.

Let each page p belonging to the base set V be associated with positive
weights ap and hp, corresponding to its authority and hub weights. The objec-
tive of weight propagation (updating) is to extract good hubs and authorities
from this base set V. The weights are normalized, so that their total sum
remains bounded. Initially, all a and h values are set to uniform constants. If
a page p is pointed to by many good hubs, its authority weight is increased
by updating

«P = ZX. (9-26)
Vg, such that q —» p, that ia, for all pages q that link to p. Similarly, if a page
p points to many good authorities, its hub weight is increased as

„ (9-27)

Vg, where p —> q. Note an interesting analogy with the weight updating
in STIRR, as explained in Section 6.6. Typically, pages with large weights
represent a dense pattern of linkages. HITS finally outputs a short list of pages
with the largest hub weights and largest authority weights, corresponding to
the given search topic.

While HITS basically works on the static information concerning a Web site
structure, LOGSOM uses dynamic information about user behavior using the
SOM (described in Section 2.2.3.3). LOGSOM can be used by, say, a company
to analyze the navigation patterns of its Web pages by its potential customers,
in order to make improved decisions.

Here the users' navigation patterns are mapped onto a two-dimensional
map. It utilizes the excellent clustering and visualization abilities of the SOM.
The system starts with a Web log file, consisting of the date, time, and address
of the requested Web pages, along with the IP address of the user's machine.
Clustering using c-means (Section 6.3.1.1) may initially be applied for reduc-
tion of the huge volume of Web data. LOGSOM causes the mapping of each
Web page (URL) onto a SOM unit, based on its similarity with other URLs
in terms of user navigation patterns. The similarity is measured in terms of
the distance on the map.

9.5.2 Soft computing approaches

The huge amount of inultivariate information offered by the Web has opened
up new possibilities for many areas of research. Due to the involvement of
human interaction in Web information (like text, image, sound, and linkages
between them), new tools and methodologies need to be extended in order to
deal with the incomplete or imprecise information. Soft computing promises
to open up new avenues in this direction.
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Considering the Web as a large distributed multimedia database, an ex-
tension of methodologies to deal with them and their mining algorithms can
be considered under image mining. The huge volumes of compressed and un-
compressed information stored in images, and their subjective evaluation by
humans in interaction with the Web, is another focus of current data mining
research requiring soft computing-based treatment [59].

There is a growing awareness that, in practice, it is easy to discover a
huge amount of information from the Web, where most of these patterns are
actually obvious, redundant, and useless or uninteresting to the user. To
prevent the user from being overwhelmed by a large number of uninteresting
patterns, soft computing techniques are needed to identify only the useful or
interesting patterns and present them to the user. Different interestingness
measures (of Sections 7.4 and 7.10) can be used for this purpose.

According to Zadeh [61], fuzzy logic may serve as the backbone of the
semantic Web, an extension of the current Web in which information is given
well-defined meaning. This enables computers and people to work in greater
cooperation. The role of fuzzy sets in Web mining [62] holds promise in

• handling of fuzzy queries involving natural language and/or linguistic
quantifiers like almost, about,

• evaluation of the matching of documents as a fuzzy similarity relation,

• deduction and summarization,

• document and user clustering, and

• information fusion in multimedia data.

User feedback is a process where the user expresses an opinion about the
documents that the system has retrieved as an answer to a certain query.
This user evaluation or opinion can be (a) used for training the classification
system and (b) reflected in the corresponding user profile. Fuzzy linguistic
modeling is useful in handling such preference relations. This information can
also be utilized by (say) marketing experts to analyze user interests.

Ordinary end-users often face difficulties in formulating a precise represen-
tation of their information needs in a Boolean query. This affects the efficiency
of the information retrieval process. Hence Web search engines require the
use of fuzzy aggregation operators. These are especially suitable in flexible
query answering and information retrieval. Fuzzy statistics may be used to
emphasize the significance of the occurrence of a term in certain portions of
a document, like URL, title, abstract, etc.

9.5.2.1 Clustering The importance of clustering to Web mining, specifically
in the domains of Web Content and Web Usage mining, make Web clustering
an interesting topic of research. This includes clustering of Web documents,
snippets, and access logs. Usually the Web involves overlapping clusters. So
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a crisp usage of metrics is better replaced by fuzzy sets that can reflect, in
a more natural manner, the degree of belongingness (or membership) to a
cluster.

The fuzzy c-medoids (of Section 6.5.1) is used to cluster relational data
from Web documents and snippets in Ref. [63]. The algorithms are ap-
plied to a collection of 1042 abstracts from the Cambridge Scientific Abstract
Web site, corresponding to ten topics. A preprocessing stage is used to filter
and remove irrelevant words, in order to generate the input feature vector
that is computed using the inverse-document frequency method. This 500-
dimensional feature vector (keywords) is reduced using principal component
analysis, resulting in a selection of 10 eigenvector values. The algorithms are
also tested on a collection of snippets, corresponding to 200 Web documents
collected by a search engine in response to a query. The results are extended
in Ref. [64] using robust estimators, providing a computational complexity
O(nlogn) instead of O(n2). This is suitable for clustering noisy data that are
characteristic of Web documents.

Relational alternating cluster estimation (RACE) [65] is used to handle
non-numerical patterns in relational datasets. The authors consider two types
of patterns related to the Web, namely, (i) document contents such as text
parts of Web pages (Web content mining) and (ii) sequences of Web pages
visited by users, such as Web logs (Web usage mining).

9.5.2.2 Association rule mining Association rules, in the context of Web min-
ing, refer to the determination of (say) those URLs that tend to be requested
together. This can be categorized under Web Usage and Web Content mining.

Web mining of inference amplification is made in Ref. [66], using infer-
ence logic from fuzzy cognitive maps in three phases. The first stage mines
association rules with the A priori algorithm (Section 7.2.1), from a Web-
log database. A corresponding fuzzy knowledge map involving causality (the
cognitive map uses values between —1 and +1) is built in the second stage,
incorporating both positive and negative rules. In the final stage, the system
applies inference amplification in order to enrich the resulting Web mining
association rules. Experiments are made using a Web-log file from a real
online shop, specializing in computers and peripherals. The causal knowl-
edge is represented as an adjacency matrix, including the connectivity WT =
{wij\Wij e {—!,+!}}. Here Wij indicates the causal value (weight) of the arc
from vertex/node Ci to Cj.

9.5.2.3 Web navigation Navigation is categorized as Web Structure mining.
An optimization of the path for surfing the Web, given a target, is described
in Ref. [67]. The connected Web sites are represented by a directed graph
with source and destination nodes, and in addition to a links set along the
path. The frequency of accessing various links (access rate) and the time taken
to retrieve target pages (retrieval rate) are considered as the decisive factors.
These are affected by criteria like the availability of channels, server capability,
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and access time. The expected access rate and the required retrieval rate are
expressed as fuzzy sets. Link weights are associated with appropriate linguistic
values. A fuzzy opinion matrix expresses subjective estimation of users during
their surfing of specified links on the path. The general evaluation of the link,
with respect to interest rate of users, is provided as the intersection among
the estimation made by the different users. The optimal path is computed as
the minimum fuzzy distance estimated between a fuzzy Hurwicz opinion set
(derived in terms of optimism-pessimism index) and the actual requirement
set.

9.5.2.4 Web personalization The increasing popularity of the Internet and
the exponential increase in the number of its users has led to the creation
of new paradigms of knowledge discovery, like Web personalization, mining
bookmarks, mining e-mail correspondences, recommendation systems, and so
on. These are grouped as Web Usage mining.

Mining typical user profiles and URL associations from the vast amount of
access logs is an important component of Web personalization, which deals
with tailoring a user's interaction with the Web information space based on
information about her/him. Nasraoui et al. [68] have defined a user session
as a temporally compact sequence of Web accesses by a user and used a
dissimilarity measure between two Web sessions to capture the organization
of a Web site. Automatic discovery of user session profile is made using
fuzzy Competitive Agglomeration for Relational Data (CARD) algorithm.
Complex, non-Euclidean distance/similarity measures can be handled in this
framework. Log files are collected from a real site in order to mine the user
profiles. The experimental results "capture" the pattern for users in profiles
like outside visitor, prospective student, those that attend lessons by the same
professor, an so on. To discover user profiles from real log files, various fuzzy
clustering methods have been applied.

9.5.2.5 Information retrieval Typically, four main constituents can be iden-
tified in the process of information retrieval from the Internet.

• Indexing: generation of document representation

• Querying: expression of user preferences through natural language or
terms connected by logical operators

• Evaluation: performance of matching between user query and document
representation

• User profile construction: storage of terms representing user preferences,
especially to enhance the system retrieval in future accesses by the user

Due to the presence of multimedia information repositories consisting of mixed
media data, the information retrieved can be text as well as image document
or a mixture of both.
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Fuzzy genes axe used as intelligent agents for information retrieval from
the Web [69]. User profiles are built from the user preferences, represented
by chromosomes made up of a vector of fuzzy genes. Each chromosome is
associated with a fitness corresponding to the system's belief in the hypothe-
sis that the chromosome, as a query, represents the user's information needs.
Every gene represents, by a fuzzy set, the number of occurrences that char-
acterizes the documents considered relevant by the user. The fitness of the
chromosome is adjusted based on the comparison between the user's evalua-
tion of the retrieved documents and the score computed by the system. GAs
are used to track the user's preferences and adapt the profile by incorporat-
ing her/his relevance feedback, while fuzzy sets handle the imprecision in the
user's preferences and evaluation of the retrieved documents.

9.6 CONCLUSIONS AND DISCUSSION

In this chapter, we discussed how the data mining techniques can be applied
in multimedia data. Multimedia data consist of a mixture of text, image,
video, graphics, audio, speech, hypertext, markup languages, etc. Multimedia
databases are large databases, and mining multimedia data is challenging
because of the inherently unstructured characteristics of these data. Keeping
this in view, we have presented here different aspects of multimedia data
mining principles and applications.

Textual documents were considered in the framework of text mining. We
have discussed how the semistructured text can be modeled and feature vec-
tors can be generated from this model, so that they can be indexed and used
for query and mining operations. We have presented issues and principles be-
hind image mining, particularly in the light of content-based image retrieval.
The underlying principles of content-based image retrieval, based on several
image features such as color, shape, texture, etc., have been provided. We
have introduced the purpose and target of MPEG-7 standard for Multimedia
Content Description Interface. Video retrieval system was described, in the
light of MPEG-7 as well as content-based image retrieval. Finally we discussed
Web mining, and the role of soft computing in mining Web data.
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10
Bioinformatics: An

Application

10.1 INTRODUCTION

Computational Molecular Biology [1] is an interdisciplinary subject involving
fields as diverse as biology, computer science, information technology, mathe-
matics, physics, statistics, and chemistry. Bioinformatics [2]-[4] concentrates
on the information science related aspect of this. Since the inception of the
Human Genome Project, Bioinformatics has drawn a lot of attention. Upon
completion of this project, one needs to analyze and interpret the vast amount
of data that are now available. This involves the decoding of 50,000-100,000
human genes. Data mining holds promise in this direction. High-dimensional
clustering is a potential for grouping genes and proteins with many attributes.
In addition to the combinatorial approach for solutions, there also exists scope
for soft computing, especially for generating low-cost, low-precision good so-
lutions.

Bioinformatics [2]-[4] can be defined as the application of computer tech-
nology to the management of biological information. It encompasses a study
of the inherent genetic information, underlying molecular structure, resulting
biochemical function, and the exhibited phenotypic symptoms. Here comput-
ers are used to gather, store, analyze, and integrate biological and genetic
information, which can then be applied to gene-based drug discovery and
development. Current research involves the design and implementation of
programs and systems for the storage, management, and analysis of the vast
amounts of DNA and protein sequence data. Biological data mining is an
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emerging field of research and development for further progress in this direc-
tion [4].

The high-volume, data-driven nature of modern experimental biology has
led to the creation of many databases that contain genomes, protein sequences,
gene expression data, and other datatypes. Researchers often retrieve infor-
mation from these databases based on one characteristic, such as ammo acid
sequence, gene annotation, or protein name. Answering queries involves some
form of data analysis, such as statistical significance, clustering, or sequence
homology search. The Basic Alignment Search Tool (BLAST) [5] is typically
the first Bioinformatics tool a biologist uses when examining a new DNA or
protein sequence. BLAST compares the new sequence to all sequences in
the database to find the most similar known sequences. Advances related to
recognizing protein interactions, improving homology search, and identifying
cellular location, in the context of data mining, are discussed in Ref. [6]. Tech-
niques from string matching with examples demonstrating how they can be
applied in DNA search were presented earlier in Section 4.3 in Chapter 4.

Unlike a genome, which provides only static sequence information, mi-
croarray experiments produce gene expression patterns that provide dynamic
information about cell function. This information is useful while investigating
complex interactions within the cell. For example, data mining methods can
ascertain and summarize the set of genes responding to a certain level of stress
in an organism [3]. Microarray technologies have been utilized to evaluate the
level of expression of thousands of genes in colon, breast and blood cancer
treatment [4]. The sheer volume of the data makes it impossible to view a
large microarray clustering result on a 2D/3D display. Efficient interactive
visualization tools are needed to facilitate pattern extraction from microarray
datasets. Gene expression data being typically high-dimensional, it requires
appropriate data mining strategies like clustering and string matching for fur-
ther analysis.

Recent years have seen (a) an explosion in the availability of structural
information pertaining to drug targets and (b) the growth of computational
chemistry and Bioinformatics methods to exploit these. Simultaneously, com-
binatorial chemistry and screening technologies have greatly advanced, an-
alyzing large amounts of structure-based design inputs in order to discover
small molecule leads and then optimizing their potency and pharmacokinetic
properties to produce useful drugs.

Proteins constitute an important ingredient of living beings and are made
up of a sequence of amino acids. There can be a large number of 3D states for
a protein. The determination of an optimal conformation constitutes protein
folding. This promises to provide enormous information on the presence of ac-
tive sites and possible drug interaction. Incomplete folds can cause disabling
diseases like Alzheimer's and "mad cow" syndrome. Misfolding also causes
respiration and locomotion failures, as attempted in biowarfare, because pro-
tein functions cannot be fully carried out in that environment.
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The folding of a protein is a highly complex process. There are nearly
100,000 proteins encoded in the human genome, and there are thought to
be more than a thousand fundamentally distinct structural architectures into
which folded proteins can be classified. To establish how a newly formed
polypeptide sequence of amino acids finds its way to its correct fold, rather
than the countless alternatives, is one of the greatest challenges in modern
structural biology. To respond to this challenge requires interdisciplinary
research involving the most advanced techniques available to the chemists
and structural biologists. A good survey on molecular modeling of proteins
and prediction of their structures is provided in Ref. [7].

Soft computing tools like neural networks and genetic algorithms have been
used for analyzing the different protein structures and folds [8]-[ll]. Since the
work entails processing huge amounts of incomplete or ambiguous data, the
learning ability of neural networks, uncertainty handling capacity of fuzzy
sets, and the searching potential of genetic algorithms are utilized in this
direction.

In this chapter we focus on the Information Science-related aspects of Bioin-
formatics, particularly micoroarray data, gene expression profiles, protein
structure prediction and folding, including soft computing-based methods.
Section 10.2 provides an introduction to the basics of protein structure and
microarray data. The Information Science-related aspects of Bioinformatics
are described in Section 10.3, with appropriate emphasis on data mining.
High-dimensional clustering of microarray data to analyze gene expressions
is discussed in Section 10.4. Mining of association rules in Bioinformatics
is described in Section 10.5. The role of soft computing is highlighted in
Section 10.6. Finally, Section 10.7 concludes the chapter.

10.2 PRELIMINARIES FROM BIOLOGY

Proteins are built up by polypeptide chains of amino acids, which consist of
the deoxyribonucleic acid (DNA) as the building block. In this section we
provide a basic understanding of the protein structure and DNA microarray
data.

10.2.1 Deoxyribonucleic acid

The nucleus of a cell contains chromosomes that are made up of the dou-
ble helical DNA molecules. The DNA consists of two strands of phosphate
and deoxyribose sugar molecules, joined by covalent bonds. To each sugar
molecule is attached one of the four nitrogenous bases, namely, adenine (A),
cytosine (C), guanine (<7), thymine (T). Note that uracil (U) exists in place
of T in ribose sugar. Bases between the strand pairs are attached by hydrogen
bonds, such that either AT or GC comes together. The monomeric units of
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nucleic acids, within the DNA, are called nucleotides. A nucleotide is a com-
bination of a phosphate, a sugar, and a purine or a pyrimidine base, where a
purine (or pyrimidine) consists of A, G (or C, T).

There are approximately 3 billion base pairs in our body. The DNA is a
string of A, C, G, T, and the whole stretch of DNA is called the genome of
the organism. Genes are coded in fragments of DNA (either strand) that are
dispersed in the genome. Each gene contains information to produce a single
protein. The DNA codes for protein (unbranched organic polymers), and the
enzymes and hormones are also proteins. Understanding what parts of the
genome encodes which genes is the topic of the Human Genome project.

DNA in the human genome is arranged into 24 distinct chromosomes, that
are physically separate molecules ranging in length from about 50 million
to 250 million base pairs. Each chromosome contains many genes, the ba-
sic physical and functional units of heredity. However, genes comprise only
about 2% of the human genome; the remainder consists of noncoding regions,
whose functions may include providing chromosomal structural integrity and
regulating where, when, and in what quantity proteins are made.

The DNA is transcribed to produce messenger (m)-RNA, which is then
translated to produce protein. The ra-RNA is single-stranded and has a ribose
sugar molecule. There exist 'Promoter' and 'Termination' sites in a gene,
responsible for the initiation and termination of transcription. Translation
consists of mapping from triplets (codons) of four bases to the 20 amino acids
building block of proteins.

10.2.2 Amino acids

An amino acid is an organic molecule consisting of an amine (NH) and a
carboxylic (CO) acid group (backbone), together with a side chain (hydrogen
atom and residue R) that differentiates between them. More than one triplet
of DNA can map to the same amino acid, but the same triplet cannot map to
two different amino acids. A sequence of amino acids, held together by peptide
bonds forming a polypeptide chain, endow a protein with its 3D structure.
In humans a gene consists of exons that get translated into an amino acid
sequence, separated by introns (that are not translated). The carboxyl and
amino groups of a pair of amino acids react through hydrolysis (removal of
water molecule) to link and form a peptide bond. Similar reactions occur
along the chain to form a protein molecule.

Proteins are polypeptides, formed within cells as a linear chain of amino
acids. The length of a protein can vary from 10s to 1000s of amino acid
monomers. Each monomer or amino acid, itself, consists of 10 or more atoms,
making the macromolecule extremely large and complex. It is therefore not
surprising that the many interactions cause the chain to fold and twist. Pro-
teins in the living world reach a stable, unique, 3D structure, and this is
responsible for a biological function.
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Fig. 10.1 Molecular biology

10.2.3 Proteins

Although genes get a lot of attention, the proteins are the ones that per-
form most life functions and even make up the majority of cellular structures
in our body. Proteins are large, complex molecules made up of smaller sub-
units called amino acids. Chemical properties that distinguish the 20 different
amino acids cause the protein chains to fold up into specific three-dimensional
structures that define their particular functions in the cell. Figure 10.1 depicts
the whole system.

The constellation of all proteins in a cell is called its proteome. Unlike the
relatively unchanging genome, the dynamic proteome changes from minute
to minute in response to tens of thousands of intra- and extracellular envi-
ronmental signals. A protein's chemistry and behavior are specified by the
gene sequence and by the number and identities of other proteins made in the
same cell at the same time and with which it associates and reacts. Studies
to explore protein structure and activities, known as proteomics, will be the
focus of much research for decades to come and will help elucidate the molec-
ular basis of health and diseases. Proteins are the primary carriers of signals
in an organism. Figure 10.2 summarizes how information gets transferred to
proteins.
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Fig. 10.2 Central dogma of molecular biology.

Proteins are involved in virtually every biological process in a living sys-
tem. They are synthesized on ribosomes as linear chains of, typically, several
hundred amino acids in a specific order from information encoded within the
cellular DNA. In order to function, these chains must fold into the unique
native three-dimensional structures that are characteristic of the individual
proteins. In a cell, this takes place in a complex highly crowded molecular
environment. There are several families of cellular proteins whose job is to
catalyze the folding process of the other proteins that are required by the
living organism.

In a cellular environment, molecular chaperones help to protect the incom-
pletely folded polypeptide chains from aggregating. Even after the folding
process is complete, however, a protein can subsequently experience condi-
tions under which it unfolds, at least partially, and then again becomes prone
to aggregation. It is becoming clear that the failure of proteins to fold cor-
rectly or to remain folded under all appropriate physiological conditions can
give rise to a wide range of pathological conditions. Diseases associated with
misfolding now include genetic, sporadic, and even infectious ailments.
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10.2.4 Microarray and gene expression

DNA microarrays (gene arrays or gene chips) [3] usually consist of thin glass
or nylon substrates containing specific DNA gene samples spotted in an array
by a robotic printing device. Researchers spread fluorescently labeled m-RNA
from an experimental condition onto the DNA gene samples in the array. This
m-RNA binds (hybridizes) strongly with some DNA gene samples and weakly
with others, depending on the inherent double helical characteristics. A laser
scans the array and sensors to detect the fluorescence levels (using red and
green dyes), indicating the strength with which the sample expresses each
gene. The logarithmic ratio between the two intensities of each dye is used
as the gene expression data. The relative abundance of the spotted DNA
sequences in a pair of DNA or RNA samples is assessed by evaluating the
differential hybridization of the two samples to the sequences on the array.

Gene expression levels can be determined for samples taken (i) at multi-
ple time instants of a biological process (different phases of cell division) or
(ii) under various conditions (tumor samples with different histopathological
diagnosis). Each gene corresponds to a high-dimensional row vector of its
expression profile.

10.3 INFORMATION SCIENCE ASPECTS

Bioinformatics requires handling large volumes of data, involving natural in-
teraction with information science. One needs to consider the problems of
data storage, analysis, and retrieval, along with the computational modeling
and simulation. Data mining, image processing, and visualization are the
other important constituents required to help the user with a visual environ-
ment that facilitates high-dimensional data dependent on many parameters.
Information theory based lossless data compression techniques can play a vital
role in management of this high volume of data.

Genomes cannot be sequenced all at once. This involves around 40K-100K
base pairs, broken into 400-2000 small fragments of about 1000 base pairs. It
is an NP-hard combinatorial problem, involving factors such as (i) unknown
relative position and orientation of fragments within original DNA sequence
and (ii) noisy and partial information about sequence of each fragment. The
different aspects currently handled by information scientists include

• Protein folding problem

• Genomic sequence analysis

• Homology search and multiple alignment

• Searching biological databases.

In this section we concentrate on some of these problems in detail. The data
mining aspects are appropriately highlighted.
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10.3.1 Protein folding

Given the primary structure of a protein, in terms of a linear sequence of amino
acids, the aim is to predict its 3D structure. The 3D structure is related to the
functionality, say the diversity or specificity involved. It is useful in designing
efficient drugs to cure diseases. However, considering all interactions governed
by the laws of physics and chemistry to predict 3D positions of different atoms
in the protein molecule, a reasonably fast computer would need one day to
simulate 1 ns of folding. This gives an idea about the complexity of the
problem under consideration.

Protein folding is a thermodynamically determined problem. It is also a
reaction involving other interacting amino acids and water molecules. The
secondary structure can involve an o: helix (with the CO group of the ith
residue hydrogen (H)-bonded to the NH group of the (i -f- 4)th one) or a ft
sheet (corrugated or hairpin structure) formed by the H-bonds between the
amino acids. The parts of the protein that are not characterized by any
regular H-bonding patterns are called random coils. Neural nets (MLP) have
been used to predict the secondary structure of proteins [8] [10]. These are
described in further detail in Section 10.6.

The tertiary structure refers to the 3D conformation of the protein. Since
the search space is large, there can exist many possible 3D structural con-
formations for a short primary sequence. The objective is to determine the
minimum energy state for a polypeptide chain folding. GAs have been used
for the prediction of tertiary structures [11]. This is discussed in Section 10.6.
There also exists a quaternary structure pertaining to certain proteins that
contain more than one polypeptide chain.

The process of protein folding involves minimization of an energy function,
that is expressed in terms of several variables like bond lengths, bond angles
and torsional angles. The major factors affecting folding include (i) hydrogen
bonding, (ii) hydrophobic effect, (iii) electrostatic interactions, (iv) Van der
Waals forces, and (v) conformational entropy.

10.3.1.1 Hydrogen bonding Polypeptides contain numerous proton donors
and acceptors, both in their backbone and in the R-groups of the amino acids.
The environment in which proteins are found also contains ample H-bond
donors and acceptors of the water molecule. H-bonding, therefore, occurs not
only within and between polypeptide chains but also with the surrounding
aqueous medium.

10.3.1.2 Hydrophobic forces Proteins are composed of amino acids that con-
tain either hydrophilic or hydrophobic R-groups. It is the nature of the in-
teraction of the different R-groups with the aqueous environment that plays
a major role in shaping protein structure. The spontaneous folded state of
globular proteins is a reflection of a balance between (a) the opposing energet-
ics of H-bonding between hydrophilic R-groups and the aqueous environment
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and (b) the repulsion from the aqueous environment by the hydrophobic R-
groups. The hydrophobicity of certain amino acid R-groups tends to drive
them away from the exterior of proteins into the interior. This driving force
restricts the available conformations into which a protein may fold.

10.3.1.3 Electrostatic forces Electrostatic forces are mainly of three types,
namely, charge-charge, charge-dipole and dipole-dipole. Typical charge-
charge interactions, which favor protein folding, are those between oppositely
charged R-groups. A substantial component of the energy involved in protein
folding is from charge-dipole interactions. This refers to the interaction of
ionized R-groups of amino acids with the dipole of the water molecule. The
slight dipole moment that exists in the polar R-groups of amino acid also in-
fluences their interaction with water. It is, therefore, understandable that the
majority of the amino acids found on the exterior surfaces of globular proteins
contain charged or polar R-groups.

10.3.1.4 Van der Waals forces There are both attractive and repulsive Van
der Waals forces that control protein folding. Attractive Van der Waals forces
involve the interactions among induced dipoles, which arise from fluctuations
in the charge densities occurring between adjacent uncharged nonbonded
atoms. Repulsive Van der Waals forces involve the interactions that occur
when uncharged nonbonded atoms come very close together but do not in-
duce dipoles. The repulsion is the result of the electron-electron interaction
that occurs as two clouds of electrons begin to overlap. Although Van der
Waals forces are extremely weak, relative to other forces governing a stable
conformation, it is the huge number of such interactions that occur in large
protein molecules that makes them significant to the folding of proteins.

10.3.2 Protein structure modeling

There are three broad approaches to predicting the structure of an unknown
protein, based on its similarity to known protein structures. These are

• Comparative or homology modeling: Predicts protein structure based on
the strength of a protein sequence similarity to known structures. This
is also termed template detection, and it is generally undertaken in case
of greater than 30% similarity with an available template structure.

• Protein threading: Given a sequence of proteins with unknown structure
and a database of known folds, it finds the most plausible fold after
evaluating the quality or stability of the arrangement. This approach is
typically undertaken in case of around 20-30% similarity.

• Ab initio: Calculates coordinates of protein sequences without reference
to existing protein structures. This technique is followed when the sim-
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ilarity is even lower, and hence the former two approaches cannot be
applied.

Detecting repeatedly occurring 3D structures in molecules can help biolo-
gists to understand their functions. This is particularly useful in modeling the
tertiary structures of proteins. Wang et al. [12] have approached the problem
by finding patterns in 3D graphs. Each node in the graph is an undecompos-
able or atomic unit and has a label, with edges linking them. Patterns are
defined as rigid substructures that may occur in a graph after allowing for an
arbitrary number of whole-structure rotations and translations, as well as a
small number of user-specified edit operations (namely, relabeling, deleting,
inserting) either in the patterns or in the graph. A geometric hashing tech-
nique is used to hash node-triplets of the graphs into a 3D table and compress
their label-triplets. The algorithm proceeds by finding candidate patterns
from the graphs and calculating their occurrence numbers to determine which
of them satisfy the user-specified requirements. Applications are made in sci-
entific data mining by (i) locating frequently occurring motifs in two families
of proteins and applying the discovered patterns to classify large 3D protein
structures and (ii) clustering chemical compounds based on the 3D patterns
occurring in them. The performance of the algorithm is good in terms of high
recall and precision rates, both for classification and clustering.

10.3.3 Genomic sequence analysis

Gene hunting is a complex task. This is because coding regions account
for only 3% of the human genome; and of the 694,000 sequences available
in public databases, only around 2000 unique protein structures have been
found. Experimental structure elucidation by X-ray crystallography and/or
NMR is very slow. Data mining can be usefully applied to deal with such
large volumes of data. Correctly predicting the position of genes in the DNA
and knowing their encoded 3D protein structure will be helpful in drug and
vaccine design and individual characteristics determination. GENSCAN [13]
has been designed for this purpose using the Hidden Markov Model.

10.3.4 Homology search

Proteins in different organisms are related to one another by evolution from
a common ancestor. Those proteins related with respect to the common an-
cestor are called homologues. This relationship can be recognized by multiple
sequence comparisons. A similar primary structure leads to a similar 3D
structure, resulting in a similar functionality of the proteins. It is even more
challenging to find similarity between two distant homologues. The problem of
finding closely related homologues has been solved to some extent by adopting
the techniques in string matching for string alignment and similarity matching
algorithms. As a matter of fact, string matching techniques have been widely
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used DNA sequencing and homology search in Die-informatics. We have de-
scribed the foundation of string matching algorithms and some of the classical
algorithms for string matching including ^-approximate matching of strings
hi Chapter 4. The principles behind the k approximate string matching, edit
distance between two strings, and pattern search with ^-mismatches can be
adopted in the development of homology search as well as biological database
search.

The dynamic programming approach has been adopted to find DNA se-
quence alignment. The principle is similar to the one described in Section 4.4.
However, the traditional dynamic programming method for local alignment
is too slow. Fast Alignment (FASTA) [14] and Basic Local Alignment Search
Tool (BLAST) [5] are often found to be more efficient.

10.3.4.1 Dynamic programming for sequence alignment Dynamic program-
ming is a very powerful mathematical and algorithmic tool and has been used
in many real-life problems. We have shown how this tool has been used in
approximate string matching in Chapter 4. Here we use the dynamic pro-
gramming approach for solving sequence alignment of two DNA strings.

As we know, a string is defined as a sequence of characters or symbols from
an alphabet. Let us consider two strings Si = Si[l • • • m] and 62 = 52[1 • • • n]
of length m and n respectively. We further assume that these strings do not
have any blank character to begin with. Let us denote the blank character
as '_'. A string S can be transformed to a string S by inserting one or more
blank characters in any position in the string S. For example, string S =
'twobooks"1 of length 8 can be transformed to S = itwoJ>ook.s'> of length 10.

An alignment of Si and 52 is the choice of inserting blank characters in
Si or ^2 or both, so that there is no k for which both Si[k] and 52[fc] are
blanks. For example, alignment of 5i = 'mood' and 52 = ligloo' may be 5i
= '_m_ood' and 52 = l igloo J.

We can assign a scoring factor for the above alignment [15]. Although there
are a number of ways to assign scoring factor, the most common scoring factor
used by many algorithms is the linear additive scoring scheme. The score
uj(a, b) maps two characters or symbols a and b from an alphabet (including a
blank) to real numbers, and u>(a, b) = a; (6, a). The score fi of the alignment
of two strings is calculated by accumulating some matching points in each
character location. Let us assume that for each match one gets 2 points, 0
points for each mismatch, and —1 for each blank. Then the score of alignment
of the above example will be

, 52) = u(_, «) + u;(m, g) + u(. , 0 -I- w(o, o)
= (-1) + 0 + (-1) + 2 + 2+ (-1) = 1.

A high score obviously reflects a good alignment between two strings, and
hence intuitively may detect the organisms with close evolutionary relation-
ships. Based on this assumption, we can now formulate the dynamic pro-
gramming problem as follows.
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Given two strings Si and £2 and a scoring scheme, an alignment of Si and
82 is optimal if there is no other alignment with a higher score. The highest
possible score is called the similarity of Si and 52, denoted by Sim(Si,S<2).
Let

where i = 1 to |Si| and j = 1 to JS^I, and then

The key idea behind the solution is that for i,j > 1, if we know the values of
f(i — 1, j), f(i, j — 1), and f(i — 1, j — 1), then we can easily compute, by a
recursive step [16],

/(t,j) =max{ f(i-l,j-l)+u(Si\i],S2\j}),
i[i], -), (10.1)

The first element of the maximum occurs when Si[i] and 52 [j] are both non-
blanks, the second element occurs when Si[i] is non-blank but the character
following S-2\ji\ is blank, and the third element in the maximum occurs when
the character following Si[i] is a blank and 62 b] is a non-blank. This two-
dimensional recursion for f ( i , j) can be computed in a tabular fashion, similar
to that shown in Section 4.4 for ̂ -approximate string matching, with the two
strings to be aligned written along the row and column of the table [15]. We
avoid the details here.

When the alignments are computed over the whole of strings Si and the
whole string #2, the problem is called a global alignment problem. The local
alignments of Si and 52 deals with alignments of a substring of Si and a
substring of 52- Using linear scoring schemes, S«m(Si, 52) can be computed
in time O(|5i| * |52|) by the method of dynamic programming. However, it is
still slow for local alignment. 'Fast Alignment' (FASTA) [14] and 'Basic Local
Alignment Search Tool' (BLAST) [5] are often more efficient. We describe
below the BLAST algorithm.

10.3.4.2 The BLAST algorithm BLAST is a heuristic method to find the
highest locally optimal alignments between a query sequence and a database
[5]. It does not allow the presence of gaps in between. BLAST improves
the overall speed of search while retaining good sensitivity (important as the
databases continue to grow), by breaking the query and database sequences
into fragments (words) and initially seeking matches between these fragments.
The idea behind the BLAST algorithm can be best illustrated by an example.
If the query is 'MOONLIGHT', the search is performed using a small stretch
of say 4 letters. For example 'MOON' closely matches with other words of
same length like 'SO0AT, 1MOOD\ 1GOON\ etc. These words are then ex-
tended to locate 'MOONLIGHT' in the database. The three main steps of



INFORMATION SCIENCE ASPECTS 377

the algorithm are as follows.

Step (l)(a): For a query of length I/, find all overlapping words of length W,
where W = 3 for proteins and W = 3 for DNA. For example, for the query
ABCDEFGH with W = 3 and L = 8, there will beL-W+l = 6 overlapping
words of length 3, namely, ABC, BCD, CDE, DBF, EFG, FGH.
Step (l)(b): For each of these 6 words from the query, we find a list of (close
relatives) words that will score at least a threshold T when using a suitable
substitution matrix (e.g., PAM or BLOSUM matrices that determine the sim-
ilarity between amino acids). For example, ADC has close words ADD, AEC,
EDC, which score above T. The threshold T is chosen by the user. A similar
decomposition is done for the database once and for all. In the database all
the sequences can be thought of as being combined into one big sequence,
which is then divided into words of length W.

Step (2): The word list generated from the query is compared with the
database list to identify the exact matches. This comparison can be acceler-
ated by using a hash table.

Step (3): Word hits are extended in either direction to generate an alignment
with a score exceeding the threshold S (High-score Segment Pair, HSP). In
the example above, MOONLIGHT is an HSP.

After the alignment is done, the match must be statistically checked to see
if it occurred purely by chance or if there is indeed some homology between
the sequences. Here T dictates the speed and sensitivity of the search. A
low value of T reduces the possibility of missing HSPs with the required S
score. However, lower T values also increase the size of the hit list generated,
and hence the execution time and memory required. BLAST is unlikely to
be as sensitive for all protein searches as a full dynamic programming algo-
rithm. Nevertheless, the underlying statistics provide a direct estimate of the
significance of any match found.

Some of the efficient extensions to BLAST include

• Gapped BLAST [17]: Allows insertions and deletions to be introduced
into alignments.

• Position-specific iterative BLAST (Psi-BLAST) [17]: Includes gaps, as
well as searches for distant homologies by building a profile (general
characteristics).

• Pattern Hit Initiated BLAST (Phi-BLAST) [18]: Amino acid pattern
present in a query is defined and searched.

With the availability of nucleic acid sequence information from viruses
and bacteria, efforts have been directed towards generation of highly specific
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pathogen signatures [19], including foot-and-mouth and human immunodefi-
ciency viruses. BLAST was used to compare the entire genome of the target
pathogen with all the microbial genomes in Genbank. Several gigabytes of
raw BLAST output were parsed, and all exact match regions of the pathogen
genome were masked out after comparison. The remaining part of the genome
was considered to be potentially unique to the target pathogen.

10.4 CLUSTERING OF MICROARRAY DATA

Microarrays provide a powerful basis to monitor the expression of thousands
of genes, in order to identify mechanisms that govern the activation of genes
in an organism. Short DNA patterns (or binding sites) near the genes serve
as switches that control gene expression. Therefore, similar patterns of ex-
pression correspond to similar binding site patterns. A major cause of coex-
pression of genes is their sharing of the regulation mechanism (coregulation)
at the sequence level. Control (or promoter) regions in the neighborhood of
the genes contain specific short sequence patterns, called binding sites. The
detection of such "statistically overrepresented patterns in DNA or amino
acid sequences" is called "motif" finding. Clustering of coexpressed genes,
into biologically meaningful groups, have been integrated with the discovery
of binding motifs in order to discover regulatory motifs from microarray data
[20]. Clustering also helps in inferring the biological role of an unknown gene
that is coexpressed with a known gene(s).

Motifs are found in two broad ways. Word counting methods from string
matching are based on counting the number of occurrences of each DNA word
(or oligonucleotide) and comparing this number with the expected number of
occurrences based on some statistical model. Probabilistic sequence models
build a likelihood function for the sequences based on the motif occurrences
and a model of the background sequence. Optimization methods like expec-
tation maximization (EM) and Gibbs sampling are used to search for good
motif configurations.

Clustering of gene expression profiles often require preprocessing along the
following lines.

1. Normalizing the hybridization intensities within a single array experi-
ment.

2. Transforming the data using a nonlinear function, like the logarithm hi
case of expression ratios.

3. Estimating and replacing missing values in expressions, or adapting ex-
isting algorithms to handle missing values.

4. Filtering gene expression profiles, to eliminate those that do not satisfy
some simple criteria.
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5. Standardizing or rescaling the profiles, say, to generate vectors of length
one.

Cluster validation is essential, from both the biological and statistical per-
spectives, in order to biologically validate and objectively compare the results
generated by different clustering algorithms. Statistical cluster validation is
done by evaluating cluster coherence, predictive accuracy, and robustness to
noise. Based on biological intuition, a cluster result can be termed reliable if
the within-cluster distance is small (i.e., all genes within a cluster are tightly
coexpressed) and the maximal inter-cluster distance is large (or, the cluster
has an average profile well delineated from the remaining dataset). Quanti-
tative statistics like Dunn's validity index [21] and Figure of Merit [22] have
been used to compare different clustering algorithms.

A categorization of clustering algorithms (dedicated to microarray data) is
provided by Moreau et al. [20], grouping some of the later methods designed
specifically to handle gene expression profiles to be in the second generation.

10.4.1 First-generation algorithms

First-generation clustering algorithms, used on gene expression profiles, in-
clude c-means [23], self-organizing maps (SOMs) [24], and hierarchical clus-
tering [25]-[27]. The SOM neural net has been applied to the exploratory data
analysis of gene expression data from a yeast DNA microarray [28]. Hierar-
chical clustering is the most widely used method, given its good visualization
properties. Clusters are generated by cutting the dendogram at a certain
level. However, it is arbitrary to predict the level that would correspond to
the best biological results. Moreover, the quadratic complexity of the method
is a source of inconvenience for mining the large volumes of data. In case of c-
means algorithm, the center corresponds to the average expression vector. But
the prediction of the number of clusters in advance is often arbitrary from the
context of biology. SOMs require a selected node in the gene expression space
(along with its neighbors) to be rotated in the direction of a selected gene
expression profile (pattern). Again, the predefinition of a two-dimensional
topology of nodes can be a problem considering biological relevance.

An inherent problem with all these algorithms is that they force every data
point into a cluster. In case of microarray data, a considerable number of
genes do not contribute to the biological process being studied and hence lack
coexpression with other genes. Inclusion of such noisy genes in any cluster
causes contamination, making it less suitable for further analysis. Besides,
the computational and memory complexities of these methods often limit the
number of expression profiles that can be handled.
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10.4.2 Second-generation algorithms

These include the self-organizing tree algorithm (SOTA) [29], model-based
clustering [30, 31], and quality-based clustering [32, 33],

The SOTA [29] is a dynamic binary tree that combines the characteristics
of SOMs and divisive hierarchical clustering. As in SOMs, the gene expression
profiles are sequentially and iteratively presented at the terminal nodes, and
the mapping of the node that is closest (along with its neighboring nodes)
is appropriately updated. Upon convergence, the node containing the most
variable (measured in terms of distance) population of expression profiles is
split into sister nodes, causing a growth of the binary tree. Unlike conven-
tional hierarchical clustering, SOTA is linear in complexity to the number of
profiles. The number of clusters need not be known in advance, as in c-means
algorithm. A statistical procedure is followed for terminating the growing of
the tree, thereby eliminating the need for an arbitrary choice of cutting level
as in hierarchical models. However, no validation is provided to establish its
biological relevance.

Model-based clustering [30, 31] typically assumes multivariate probability
(normal) distributions to represent clusters. The covariance matrix for each
cluster is expressed by its eigenvalue decomposition, which controls the ori-
entation, shape, and volume parameters. Initially the model parameters are
estimated by the EM algorithm using fixed cluster number and covariance
structure. Then the best from this group of models is selected, based on an
information theoretic criterion.

Quality-based clustering (QT.Clust) [32] generates clusters with a quality
guarantee (user-defined threshold), ensuring that each member of a cluster is
coexpressed with all other members. It is a greedy procedure, generating clus-
ters satisfying the quality guarantee with a maximum number of expression
profiles. The algorithm terminates when the number of points in the largest
remaining cluster falls below a specified threshold. However, the user-defined
quality guarantee is often difficult for biologists to handle and often leads to
extensive parameter fine-tuning. The computational complexity is quadratic
in the number of expression profiles.

Adaptive quality-based clustering [33] uses an estimate of the quality of
the cluster, so that the initial center is located in a region of locally dense
gene expression profiles. In an adaptive step, the quality of the cluster is
re-estimated to determine significant coexpression of genes in terms of a sig-
nificance level. The process is repeated until the relative difference between
the initial and re-estimated quality is sufficiently small. The computational
complexity of the algorithm is linear in the number of expression profiles and
has been biologically validated. However, the approach is heuristic and not
proven to converge in every situation.
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10.5 ASSOCIATION RULES

Rule mining in Bioinformatics analyzes large collections of molecules to dis-
cover some regularity among molecules of a specific class. For example, in
drug discovery a biologist tries to find new drug candidates based on experi-
mental evidence of activity against a certain disease by screening the data. In
chemical synthesis success prediction, on the other hand, the aim is to detect
molecular features that inhibit the desired reaction.

Linear fragments or chains of atoms have been mined [34] using a technique
similar to the A priori algorithm of Section 7.2.1. However, this restriction to
linear fragments eliminates consideration of ring-like substructures that are
common to most real-world applications involving molecular representations.

Association rules have been mined for molecular fragments, which help
discriminate between different classes of activity on the National Cancer In-
stitute's HIV-screening dataset [35]. Here a restricted depth-first search al-
gorithm, similar to the Eclat association rule mining strategy [36], is used
to determine connected substructures. It maintains parallel embeddings of a
fragment in all molecules throughout the growth process of the search tree,
while exploiting the local order of the atoms and bonds (single, double, triple,
or aromatic) in the fragment to prune the tree.

Association rules can reveal biologically relevant associations between dif-
ferent genes, which are highly expressed or repressed in diseased and/or
healthy cells. They can also be used to express associations between cel-
lular environmental effects and gene expression, to diagnose (say) a profiled
tumor sample or a drug treatment given to cells in the sample before pro-
filing. Efficient mining of association rules from 300 gene expression profiles
of yeast, demonstrating diverse mutations and chemical treatments, has been
reported in Ref. [37] using the A priori algorithm. A gene expression profile is
considered to be a single transaction, with each transcript or protein being an
item in it. The measured value of the gene expression data is put in bins and
is marked as being up (highly expressed), down (highly repressed), or neither
up nor down.

10.6 ROLE OF SOFT COMPUTING

In this section we attempt to highlight the role of soft computing in Bioinfor-
matics. The learning ability of neural networks has been utilized to predict
the secondary structure of proteins [8]-[10]. The searching potential of GAs
has been applied for prediction of the tertiary structure of proteins [11]. The
uncertainty handling capacity of fuzzy sets is used in Ref. [38].



382 BIOINFORMATICS: AN APPLICATION

10.6.1 Predicting protein secondary structure

Prediction of protein structure from the primary amino acid sequence is a
challenging task. The problem has been approached from several angles. A
step on the way to a prediction of the full 3D structure of protein is pre-
dicting the local conformation of the polypeptide chain, called the secondary
structure.

The whole framework was pioneered by Chou and Fasmann [39]. They
used a statistical method, with the likelihood of each amino acid being one of
the three (alpha, beta, coil) secondary structures being estimated from known
proteins. Around 1988 the first attempts were made by Qian and Sejnowski
[8], to use multilayer perceptrons to predict protein secondary structure. The
performance of this method was improved by Host and Sander [9], by using
multiple-sequence alignment.

This has been further developed by Riis and Krogh [10], with ensembles of
combining networks, for greater accuracy in prediction. The Softmax method
is used to provide simultaneous classification of an input pattern into multiple
classes. A normalizing function at the output layer ensures that the three out-
puts always sum to one. A logarithmic likelihood cost function is minimized,
instead of the usual squared error. A window is selected from all the single
structure networks in the ensemble. The output is determined for the central
residue, with the prediction being chosen as the largest of the three outputs
normalized by Softmax. Figure 10.3 provides the overall network structure.

10.6.2 Predicting protein tertiary structure

Protein binding sites exhibit highly selective recognition of small organic
molecules, utilizing features like complex three-dimensional lock (active sites)
into which only specific keys (drug molecules) will fit. This has been exploited
by medicinal chemists in the design of molecules to selectively augment or re-
tard biochemical pathways and thereby exhibit desired clinical effects. X-ray
crystallography has been used to reveal the structure of many of these binding
sites. Given the active site geometry of a protein molecule, it is now possible
to obtain computer-aided design of therapeutic molecules in order to predict
and explain the binding mode of novel chemical entities. This, in essence, is
the docking problem that is of paramount importance in drug design.

Any solution to the docking problem requires a powerful search technique
to explore the conformation space available to the protein and ligand, along
with a good understanding of the process of molecular recognition to devise
scoring functions for reliably predicting binding modes. A ligand can be a
drug molecule, or even an enzyme. Genetic Optimization for Ligand Docking
(GOLD) [40] is an automated ligand docking program that uses a GA to ex-
plore the full range of ligand conformational flexibility with partial flexibility
of the protein, while satisfying the requirement that the ligand must displace
loosely bound water molecules upon binding. A simple scoring function is
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Fig. 10.3 The ensemble of combining and filtering network.

used to rank the generated binding modes. This comprises terms attributed
to hydrogen bonding, pairwise dispersion potential to account for hydropho-
bic energy of binding, and molecular mechanics-based internal energy of the
ligand.

Inspection of the X-ray crystallographic structures of proteins with associ-
ated high-affinity ligaiids reveals that the ligands appear to conform closely
to the shape of the binding cavity, by maximizing their hydrophobic contri-
bution and interacting at a number of hydrogen bonding sites. Additionally,
dispersive interactions between protein and ligand atoms are involved along
with an entropic contribution from the displacement of water molecules from
the active site into the solvent. Sufficiently accurate simulation of many of
these interactions may be enough to predict the binding mode of the majority
of high-affinity ligands.

Tertiary protein structure prediction, using GAs, has also been reported
in Ref. [11]. The objective is to generate a set of native-like conformations
of a protein based on a force field. Proteins can be represented in terms of
(a) three-dimensional Cartesian coordinates of its atoms and (b) the torsional
angle Rotamers.

The Cartesian coordinates representation has the advantage of being easily
converted to and from the 3D conformation of a protein. Bond lengths, 6, are
specified hi these terms. However, it has the disadvantage that a mutation
operator would in most instances create invalid protein conformations, where
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some atoms lie too far apart or collide. Therefore a filter is needed to eliminate
invalid individuals.

In the torsional angles representation, the protein is described by a set of
angles under the assumption of constant standard binding geometries. The
different angles involved are the

1. Bond angle 0,

2. Torsional angle <^, between N (amine group) and Ca,

3. angle t/>, between Ca and C" (carboxyl group),

4. Peptide bond angle a;, between C' and N, and

5. Dihedral angle.

The potential energy U(r\, . . . , r^) between N atoms is minimized. It is
expressed in terms of the different factors mentioned in Section 10.3.1, and is
computed as

U(n,...,rN)= EiKbfr-btf + EiKeWi-Oti2

where the first three harmonic terms on the right-hand side involve the bond
length, bond angle, and torsional angle of covalent connectivity, with &Q and
#o indicating the down-state (low energy) bond length and bond angle, respec-
tively for the ith atom. The effects of hydrogen bonding and that of solvents
(for nonbonded atom pairs i, j, separated by at least four atoms) is taken care
of by the electrostatic Coulomb interaction and Van der Waals' interaction,
modeled by the last two terms of the expression. Here K^ KQ, K^, and 6 are
constants, g, and qj are the charges of atoms i and j, separated by distance
Tij , and e indicates the dielectric constant.

A protein acquires a folded conformation favorable to the solvent present.
The calculation of the entropy difference between a folded and unfolded state
is based on the interactions between a protein and solvent pair. The term Epe,
for a conformation, is a function of its actual diameter. Here the diameter
is defined to be the largest distance between a pair of carbon atoms in a
conformation. We have

Epe = 4(actual_diameter-expected_diameter) fcm//mo;. (1Q.3)

This is the conformational entropy constituent of potential energy, in addition
to the factors involved in Eq. (10.2). It implies that extended conformations
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have larger energy values and are therefore less fit for reproduction than glob-
ular conformations.

An active site structure determines the functionality of a protein. A ligand
(enzyme or drug) docks into an active site of a protein. GOLD [40] evaluates
nonmatching bonds while minimizing the potential energy (fitness function),
defined in terms of the Van der Waals' internal and external (or ligand-site)
energy, torsional (or dihedral) energy, and hydrogen bonds. The output is the
ligand and protein conformations, associated with the fittest chromosome in
the population, when the GA terminates. The files handled are the Cambridge
Crystaiiographic Database (by Cambridge University-Glaxo collaboration),
Brookhaven Protein Database (PDB), and the Rotamer library.

10.6.3 Determining binding sites

The DEZYMER algorithm [41] is used to identify potential new ligand bind-
ing sites in proteins of known 3D structure. It alters only the sequence and
side chain structure, leaving the protein backbone fold intact. The algorithm
searches for a constellation of backbone positions arranged such that if ap-
propriate side chains were placed there, they would bind the ligand according
to a predefined geometry of interaction. It avoids bad steric contact between
atom pairs. Atomic close packing is preserved to fill the available space to the
fullest extent, while satisfying potential hydrogen-bond-forming groups.

The protein database (PDB) contains known 3D atomic coordinates of the
target protein. The Rotamer libraries for the different side chains provide
a collection of allowed conformations of side chains obtained from the crys-
tal structures of proteins. A predefined ligand binding geometry is provided
considering bond lengths, bond angles, dihedral angles and nonbonded (Van
der Waals) contacts. The algorithm measures the quality of fit between the
desired geometry and the one found in a particular test configuration, and
it arrives at or near a global minimum in the dihedral space for a given se-
quence in a predicted design. A test configuration is generated by evaluating
an objective function. Fuzzy set theoretic concepts have been applied in the
DEZYMER algorithm [38], to handle existing uncertainties in the modeling.

10.6.4 Classifying gene expression data

Classification of acute leukemia, having highly similar appearance in gene
expression data, has been made by combining a pair of classifiers trained with
mutually exclusive features [42]. Gene expression profiles were constructed
from 72 patients having acute lymphoblastic leukemia (ALL) or acute myeloid
leukemia (AML), each constituting one sample of the DNA microarray. Each
pattern consists of 7129 gene expressions. Feature selection was employed to
generate 25 top-ranked genes for the experiment.
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A neural network combines the outputs of the multiple classifiers. Feature
selection with nonoverlapping correlation (such as Pearson and Spearman
correlation coefficients) encourages the classifier ensemble to learn different
aspects of the training data in a wide solution space. The recognition accuracy
and generalization capacity are higher than those involving support vector
machines [43, 44], SOM, decision tree, and fc-NN classifier.

10.7 CONCLUSIONS AND DISCUSSION

Bioinformatics is a new area of science where the combination of statistics,
molecular biology, and computational methods is used for analyzing and pro-
cessing biological information like gene, DNA, RNA, and proteins. Proteins
play a very important role in Bioinformatics. Improper folding of protein
structure is responsible for causing many diseases. Therefore, accurate struc-
ture prediction of proteins is one of the main goals for proteomics.

The principles and results of string matching have been used to solve many
problems in Bioinformatics, especially for DNA sequencing, alignment, homo-
logue search, etc. We have discussed these issues in this chapter. We have
also shown how string matching techniques can be used to search patterns in
DNA sequence in Chapter 4.

Soft computing tools like neural networks and genetic algorithms have been
used for analyzing the different protein structures and folds. Since the work
entails processing huge amounts of incomplete or ambiguous data, the learning
ability of neural networks, uncertainty handling capacity of fuzzy sets, and
the searching potential of GAs are utilized in this direction. Artificial neural
networks have been used for the determination of secondary structures of
proteins. GAs are used for the prediction tertiary structure, by minimizing a
potential energy function.

Microarray Bioinformatics has aided in a massive parallelization of exper-
imental biology [3], Hierarchical clustering has been shown to be effective
in microarray data analysis for identifying genes with similar profiles and,
possibly, similar functions. Recent decision tree packages let users manipu-
late incoming data and the rules generated, then examine the results with
color- and size-coded visualizations. This capacity to interact and explore
lets domain experts apply their knowledge by quickly testing hypotheses and
performing exploratory data analysis. Microarrays, sequenced genomes, and
the explosion of Bioinformatics research have led to astonishing progress hi
our understanding of molecular biology. Hybrid approaches, combining pow-
erful algorithms and interactive visualization tools with the strengths of fast
processors, hold promise for enhanced performance in the near future.

Interactive clustering with good visualization is being applied in the Bioin-
formatics domain [45]. Users are often willing to accept models with non-
optimal generalization performance, provided that they can explore the un-
derlying decision process and possibly influence the construction of the model
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interactively using domain knowledge. The neighborhood of each cluster, ex-
pressed in termed of a representative sample, is analyzed to select the optimal
cluster representative. Visual clustering results are provided for AIDS Antivi-
ral Screen dataset [45].

Bioinformatics, with its huge volume of high-dimensional data, holds am-
ple promise for the emergent field of biological data mining. Development of
lossless data compression holds promise to compress and manage such huge
volume of data. Some of the techniques used in very large database man-
agement systems and data mining area to reduce high-dimensionality of data
need to be utilized in biological data also, for efficient storage, retrieval, and
data management.

Some of the implications of the just completed Human Genome project
have thrown up the following possibilities.

• Cure of genetic diseases like sickle cell anemia, etc., caused by a certain
mutation, could become a reality.

• Cure for cancer could be contemplated.

• Sequencing genomes of bacteria could be useful in energy production,
environmental remediation, waste management, and biotechnology in-
dustry.

• Tackling the docking problem for drug design.

• Interference with the laws of Nature by humans.

However, the field being still in a nascent state, we tried to compile in this
chapter a concise treatise on the varied aspects of Bioinformatics currently
available in literature. We attempted to bring in flavors from applications
involving string matching, classification, clustering, and rule mining, which
pertain to the scope of this book. We look forward to a successful marriage
between biological data and mining tools, in the near future, for the better-
ment of the human race.
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