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Preface

The success of the digital revolution and the growth of the Internet have
ensured that huge volumes of high-dimensional muitimedia data are available
all around us. This information is often mixed, involving different datatypes
such as text, image, audio, speech, hypertext, graphics, and video components
interspersed with each other. The World Wide Web has played an important
role in making the data, even from geographically distant locations, easily
accessible to users all over the world. However, often most of this data are
not of much interest to most of the users. The problem is to mine useful
information or patterns from the huge datasets. Data mining refers to this
process of extracting knowledge that is of interest to the user.

Data mining is an evolving and growing area of research and development,
both in academia as well as in industry. It involves interdisciplinary research
and development encompassing diverse domains. In our view, this area is
far from being saturated, with newer techniques and directions being pro-
posed in the literature everyday. In this age of multimedia data exploration,
data mining should no longer be restricted to the mining of knowledge from
large volumes of high-dimensional datasets in traditional databases only. Re-
searchers need to pay attention to the mining of different datatypes, includ-
ing numeric and alphanumeric formats, text, images, video, voice, speech,
graphics, and also their mixed representations. Efficient management of such
high-dimensional very large databases also influence the performance of data
mining systems. Data Compression technologies can play a significant role.
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It is also important that special multimedia data compression techniques are
explored especially suitable for data mining applications.

With the completion of the Human Genome Project, we have access to
large databases of biological information. Proper analysis of such huge data,
involving decoding of genes in the DNA and the three-dimensional protein
structures, holds immense promise in Bioinformatics. The applicability of
data mining in this domain cannot be denied, given the lifesaving prospects
of effective drug design. This is also of practical interest to the pharmaceutical
industry.

Different forms of ambiguity or uncertainty inherent in real-life data need
to be handled appropriately using soft computing. The goal is to arrive at
a low-cost, reasonably good solution, instead of a high-cost, best solution.
Fuzzy sets provide the uncertainty handling capability, inherent in human
reasoning, while artificial neural networks help incorporate learning to min-
imize error. Genetic algorithms introduce effective parallel searching in the
high-dimensional problem space.

Since all these aspects are not covered in that elaborate form in current
books available in the market, we wanted to emphasize them in this book.
Along with the traditional concepts and functions of data mining, like clas-
sification, clustering, and rule mining, we wish to highlight the current and
burning issues related to mining in multimedia applications and Bioinformat-
ics. Storage of such huge datasets being more feasible in the compressed
domain, we also devote a reasonable portion of the text to data mining in the
compressed domain. Topics like text mining, image mining, and Web mining
are covered specifically.

Current trends show that the advances in data mining need not be con-
strained to stochastic, combinatorial, and/or classical so-called hard optimization-
based techniques. We dwell, in greater detail, on the state of the art of soft
computing approaches, advanced signal processing techniques such as Wavelet
Transformation, data compression principles for both lossless and lossy tech-
niques, access of data using matching pursuits in both raw and compressed
data domains, fundamentals and principles of classical string matching algo-
rithms, and how all these areas possibly influence data mining and its future
growth. We cover aspects of advanced image compression, string matching,
content based image retrieval, etc., which can influence future developments
in data mining, particularly for multimedia data mining.

There are 10 chapters in the book. The first chapter provides an introduc-
tion to the basics of data mining and outlines its major functions and applica-
tions. This is followed in the second chapter by a discussion on soft computing
and its different tools, including fuzzy sets, artificial neural networks, genetic
algorithms, wavelet transforms, rough sets, and their hybridizations, along
with their roles in data mining.

We then present some advanced topics and new aspects of data mining
related to the processing and retrieval of multimedia data. These have di-
rect applications to information retrieval, Web mining, image mining, and
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text mining. The huge volumes of data required to be retrieved, processed,
and stored make compression techniques a promising area to explore, in the
context of both images and texts. Chapter 3 introduces the readers to the
fundamentals of multimedia data compression and some popular algorithms
for data compression. We discuss the principles of string matching and some
classical algorithms in Chapter 4. Results of string matching hold ample
promise both in multimedia applications and in Bioinformatics.

Chapters 5 to 8 concentrate on classification, clustering, and rule mining.
In each of these topics, in addition to the classical discussions that are usually
available in the books currently in the market, we strive to incorporate new al-
gorithms and results based on soft computing and advanced signal processing
techniques with recent developments.

We deal with multimedia data mining in Chapter 9. In this chapter we
have discussed text mining, image mining, and Web mining issues. Next we
introduce the readers to issues from Bioinformatics, in Chapter 10. In each
case we discuss the related algorithms, showing how these can be a growing
area of study in the light of data mining in the near future.

Finally, we pose some research problems, issues, and new direction of
thoughts for researchers and developers. We have kept the presentation con-
cise and included an exhaustive bibliography at the end of each chapter. Be-
cause reported research articles in relevant domains are scarce and scattered,
we have tried to make them collectively accessible from the unified framework
of this book. Some portion of the material in this book also covers our pub-
lished work, which has been presented and discussed in different seminars,
conferences, and workshops.

The book may be used in a graduate-level course as a part of the subject
of data mining, machine learning, information retrieval, and artificial intelli-
gence, or it may be used as a reference book for professionals and researchers.
It is assumed that the readers have adequate background in college-level math-
ematics and introductory knowledge of statistics and probability theory.

For the major part of this project we worked from the two ends of this
world, often communicating via the Internet. We have collected a great deal
of rich information from the Internet. Thereby, we were the true beneficiaries
of today’s information technology. Progress in data mining will further pave
the way for usage of information technology in every walk of life in near future.
We are glad that we could complete this project in a short time within the
schedule.

We take this opportunity to thank Dr. Val Moliere of John Wiley & Sons,
Inc., for her initiative and encouragement throughout this project. She was
very helpful in every stage of compilation of this book. We are grateful to Mr.
B. Uma Shankar, Mr. Sudip Chakraborty, and Ms. Maya Dey for their valu-
able assistance while preparing the camera-ready manuscript. We sincerely
thank Dr. Ping-Sing Tsai, who assisted by reviewing a number of chapters of
the book and who provided valuable suggestions to further enrich the content.
We extend our gratitude to Dr. Amit K. Das of Bengal Engineering College
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in India, who supplied some material on content-based image retrieval in a
very short notice. Prof. Malay K. Kundu, Prof. Chaitali Chakraborti, Dr.
Andrew J. Griffis, Dr. Dragos Arotaritei, Dr. Rajat K. De, Dr. Pabitra Mi-
tra, Mr. Roger Undhagen, and Mr. Jose M. Rodriguez deserve special thanks
for their continuous encouragement and support towards the compilation of
this treatise. We would also like to thank the anonymous reviewers of our
book proposal for their very constructive review and suggestions.

Finally, sincere gratitude goes to each member of our families for bearing
with us, especially by putting up with our erratic schedules during the final
phase of this project. We are truly indebted to them for their love, encour-
agement, dedication, and support.

Sushmita Mitra
April 2003 Tinku Acharya



Introduction to Data
Mining

1.1 INTRODUCTION

The digital revolution has made digitized information easy to capture, process,
store, distribute, and transmit [1]-[3]. With significant progress in computing
and related technologies and their ever-expanding usage in different walks of
life, huge amount of data of diverse characteristics continue to be collected
and stored in databases. The rate at which such data are stored is growing
phenomenally. We can draw an analogy between the popular Moore’s law
and the way data are increasing with the growth of information in this world
of data processing applications. The advancement of data processing and the
emergence of newer applications were possible, partially because of the growth
of the semiconductor and subsequently the computer industry. According to
Moore’s law, the number of transistors in a single microchip is doubled every
18 months, and the growth of the semiconductor industry has so far followed
the prediction. We can correlate this with a similar observation from the data
and information domain. If the amount of information in the world doubles
every 20 months, the size and number of databases probably increases at
a similar pace. Discovery of knowledge from this huge volume of data is a
challenge indeed. Data mining is an attempt to make sense of the information
explosion embedded in this huge volume of data [4].

Today, data are no longer restricted to tuples of numeric or character rep-
resentations only. The advanced database management technology of today
is enabled to integrate different types of data, such as image, video, text,
and other numeric as well as non-numeric data, in a provably single database
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in order to facilitate multimedia processing. As a result, traditional ad hoc
mixtures of statistical techniques and data management tools are no longer
adequate for analyzing this vast collection of mixed data.

The current Internet technology and its growing demand necessitates the
development of more advanced data mining technologies to interpret the in-
formation and knowledge from the data distributed all over the world. In
the 21st century this demand will continue to grow, and the access of large
volumes of multimedia data will become a major transforming theme in the
global society. As an example, a report on the United States Administrations
initiative in the “Information Technology for 21st Century” {5] indicated im-
proved Internet and multimedia applications in World Wide Web encompass-
ing information visualization, interpretation, processing, analysis, etc. Hence
development of advanced data mining technology will continue to be an im-
portant area of study, and it is accordingly expected that lots of energy will
be spent in this area of development in the coming years.

There exist several domains where large volumes of data are stored in cen-
tralized or distributed databases. Some of the examples include the following.

e Digital library: This is an organized collection of digital information
stored in large databases in the form of text (encoded or raw) and pos-
sibly as a large collection of document imagery [6].

e Image archive: This consists of large database of images, in either com-
pressed or raw form. Often the image data are interspersed with text
and numeric data for proper indexing, retrieval, and storage manage-
ment.

¢ Bioinformatics: The machinery of each human body is built and run
with 50,000 to 100,000 different kinds of genes or protein molecules, and
we have five and half billion population in this diverse world. Bioin-
formatics involves analyzing and interpreting this vast amount of data
stored in these large genomic databases (7].

e Medical imagery: Large volumes of medical data are generated everyday
in the form of digital images such as digital radiographs, EKG, MRI,
CAT, SCAN, etc. They are stored in large centralized or distributed
databases in medical management systems. Automatic mining of these
data is important to the medical community.

e Health care: In addition of the above medical image data, other non-
image datatypes are also generated everyday. This may include health
insurance information, patient’s personal care physician’s information,
specialist information, patient’s medical history, etc. In addition to
these, several diagnostic information are stored by hospital management
systems [8] for ready reference or research.



INTRODUCTION 3

o Finance and investment: Finance and investment is a big data domain
of interest for data mining. It includes, but is not limited to, stock
indices, stock prices, historical performance of each stock, information
about the bonds, notes, treasury and other security investments, bank-
ing information, interest rates, loan information, credit card data, debit
card data, ATM card information, credit history of an individual, and
fraud detection [9)]. ’

¢ Manufacturing and production: A huge volume of manufacturing and
production data is generated in different forms in factories. Efficient
storage and access of these data and their analysis for process opti-
mization and trouble shooting is very important in the manufacturing
industry [10].

e Business and marketing: Data need to be analyzed for sales forecast,
business planning, marketing trend, etc.

¢ Telecommunication network: There are different types of data generated
and stored in this application domain. They may be used to analyze
calling patterns, call tracing, network management, congestion control,
error control, fault management, etc.

e Scientific domain: This consists of astronomical observations [11], ge-
nomic data, biological data, etc. There has been an exponential growth
in the collection and storage of biological databases over the last couple
of years, the human genome database being one such example.

e The World Wide Web (WWW) [12]: A huge volume of multimedia data
of different types is distributed everywhere in the Internet. The World
Wide Web can be considered as the largest distributed database that
ever existed. It consists of data that are heterogeneous in nature, and
it happens to be the most unorganized database management system
known today.

e Biometrics: Because of the need of extraordinary security of human lives
today, biometric applications will continue to grow for positive identifi-
cation of persons. A huge volume of biometric data such as fingerprint,
face imagery, etc., need to be stored and used, for access and search
toward this end.

Raw data are rarely of direct benefit. Its true value is predicated on (a)
the ability to extract information useful for decision support or exploration
and (b) understanding the phenomenon governing the data source. In most
domains, data analysis was traditionally a manual process. One or more ana-
lyst(s) would become intimately familiar with the data and, with the help of
statistical techniques, provide summaries and generate reports. In effect, the
analyst acted as a sophisticated query processor. However, such an approach
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rapidly broke down as the size of data grew and the number of dimensions
increased. Databases containing number of data on the order of 10° or above
and dimension on the order of 10 are becoming increasingly common. When
the scale of data manipulation, exploration and inferencing goes beyond hu-
man capacities, people need the aid of computing technologies for automating
the process.

All these have prompted the need for intelligent data analysis methodolo-
gies, which could discover useful knowledge from data. The term KDD refers
to the overall process of knowledge discovery in databases. While some people
treat data mining as a synonym for KDD, some others view it as a particular
step in this process involving the application of specific algorithms for extract-
ing patterns (models) from data. The additional steps in the KDD process,
such as data preparation, data selection, data cleaning, incorporation of ap-
propriate prior knowledge, and proper interpretation of the results of mining,
ensures that useful knowledge is derived from the data.

Data mining tasks can be descriptive, (i.e., discovering interesting patterns
or relationships describing the data), and predictive (i.e., predicting or clas-
sifying the behavior of the model based on available data). In other words,
it is an interdisciplinary field with a general goal of predicting outcomes and
uncovering relationships in data [13]-{16]. It uses automated tools that (a)
employ sophisticated algorithms to discover mainly hidden patterns, associa-
tions, anomalies, and/or structure from large amounts of data stored in data
warehouses or other information repositories and (b) filter necessary informa-
tion from this big dataset.

The subject of Knowledge Discovery in Databases (KDD) has evolved,
and continues to evolve, from the intersection of research from such fields
as databases, machine learning, pattern recognition, statistics, information
theory, artificial intelligence, reasoning with uncertainties, knowledge acqui-
sition for expert systems, data visualization, machine discovery, and high-
performance computing. KDD systems incorporate theories, algorithms, and
methods from all these fields. Many successful applications have been reported
from varied sectors such as marketing, finance, banking, manufacturing, secu-
rity, medicine, multimedia, telecommunications, etc. Database theories and
tools provide the necessary infrastructure to store, access and manipulate
data. A good overview of KDD can be found in Refs. {17] and [18].

Data warehousing [2] refers to the current business trends in collecting
and cleaning transactional data and making them available for analysis and
decision support. Data mining works hand in hand with warehouse data.
Data warehousing is analogous to a mechanism that provides an enterprize
with a memory, while its mining provides the enterprize with intelligence.

KDD focuses on the overall process of knowledge discovery from large vol-
umes of data, including the storage and accessing of such data, scaling of
algorithms to massive datasets, interpretation and visualization of results,
and the modeling and support of the overall human machine interaction. Ef-
ficient storage of the data, and hence its structure, is very important for its
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Fig. 1.1 The KDD process.

representation and access. Knowledge from modern data compression tech-
nologies should be utilized to explore how this storage mechanism can further
be improved.

Data mining also overlaps with machine learning, statistics, artificial intel-
ligence, databases, and visualization. However, the stress is more on the

e scalability of the number of features and instances,

¢ algorithms and architectures (while the foundations of methods and for-
mulations are provided by statistics and machine learning), and

e automation for handling large volumes of heterogeneous data.

In the remaining part of this chapter we consider data mining from the
perspective of machine learning, pattern recognition, image processing, and
artificial intelligence. We begin by providing the basics of knowledge discovery
and data mining in Section 1.2. Sections 1.3-1.7 deal with brief introductions
to data compression, information retrieval, text mining, Web mining, and im-
age mining. Their applicability to multimedia data are also highlighted. This
is followed, in Sections 1.8-1.10, by a treatise on some of the major functions
of data mining like classification, clustering, and rule mining. String match-
ing, another important aspect of data mining with promising applications to
Bioinformatics, is described in Section 1.11. An introduction to the research
issues in Bioinformatics is provided in Section 1.12. The details on all these
topics are provided in subsequent chapters of this book. In Section 1.13 we
briefly present the concept of data warehousing. Section 1.14 highlights the
applications of data mining and some existing challenges to future research.
Finally, Section 1.15 concludes the chapter.

1.2 KNOWLEDGE DISCOVERY AND DATA MINING

Knowledge discovery in databases (KDD) is defined as the nontrivial process
of identifying valid, novel, potentially useful, and ultimately understandable
patterns in data (17, 19]. The overall process consists of turning low-level
data into high-level knowledge. The KDD process is outlined in Fig. 1.1. It
is interactive and iterative involving, more or less, the following steps [20]:
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1. Understanding the application domain: This includes relevant prior knowl-
edge and goals of the application.

2. Extracting the target dataset: This is nothing but selecting a dataset or
focusing on a subset of variables, using feature ranking and selection
techniques.

3. Data preprocessing: This is required to improve the quality of the actual
data for mining. This also increases the mining efficiency by reducing
the time required for mining the preprocessed data. Data preprocess-
ing involves data cleaning, data transformation, data integration, data
reduction or data compression for compact representation, etc.

() Data cleaning: It consists of some basic operations, such as normal-
ization, noise removal and handling of missing data, reduction of
redundancy, etc. Data from real-world sources are often erroneous,
incomplete, and inconsistent, perhaps due to operational error or
system implementation flaws. Such low-quality data needs to be
cleaned prior to data mining.

(b) Data integration: Integration plays an important role in KDD. This
operation includes integrating multiple, heterogeneous datasets gen-
erated from different sources.

(c) Data reduction and projection: This includes finding useful fea-
tures to represent the data (depending on the goal of the task) and
using dimensionality reduction, feature discretization, and feature
extraction (or transformation) methods. Application of the prin-
ciples of data compression can play an important role in data re-
duction and is a possible area of future development, particularly
in the area of knowledge discovery from multimedia dataset.

4. Data mining: Data mining constitutes one or more of the following
functions, namely, classification, regression, clustering, summarization,
image retrieval, discovering association rules and functional dependen-
cies, rule extraction, etc.

5. Interpretation: This includes interpreting the discovered patterns, as
well as the possible (low-dimensional) visualization of the extracted pat-
terns. Visualization is an important aid that increases understandability
from the perspective of humans. One can evaluate the mined patterns
automatically or semiautomatically to identify the truly interesting or
useful patterns for the user.

6. Using discovered knowledge: It includes incorporating this knowledge
into the performance system and taking actions based on the knowledge.

In other words, given huge volumes of heterogeneous data, the objective
is to efficiently extract meaningful patterns that can be of interest and hence
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useful to the user. The role of interestingness is to threshold or filter the large
number of discovered patterns, and report only those which may be of some
use. There are two approaches to designing a measure of interestingness of
a pattern, namely, objective and subjective. The former uses the structure
of the pattern and is generally quantitative. Often it fails to capture all the
complexities of the pattern discovery process. The subjective approach, on the
other hand, depends additionally on the user who examines the pattern. Two
major reasons why a pattern is interesting from the subjective (user-oriented)
point of view are as follows [21].

o Unexpectedness: When it is “surprising” to the user, and this potentially
delivers new information to the user.

e Actionability: When the user can act on it to her/his advantage to fulfill
the goal.

Though both these concepts are important, it has often been observed that
actionability and unexpectedness are correlated. In literature, unexpectedness
is often defined in terms of the dissimilarity of a discovered pattern from a
predefined vocabulary provided by the user.

As an example, let us consider a database of student evaluations of different
courses offered at some university. This can be defined as EVALUATE (TERM,
YEAR, COURSE, SECTION, INSTRUCTOR, INSTRUCT_RATING, COURSE.RATING). We
describe two patterns that are interesting in terms of actionability and unex-
pectedness respectively. The pattern that Professor X is consistently getting
the overall INSTRUCT_RATING below overall COURSE.RATING can be of inter-
est to the chairperson, because this shows that Professor X has room for
improvement. If, on the other hand, in most of the course evaluations the
overall INSTRUCT.RATING is higher than COURSE_RATING and it turns out that
in most of Professor X’s rating the overall INSTRUCT_RATING is lower than
COURSE.RATING, then such a pattern is unexpected and hence interesting.

Data mining is a step in the KDD process consisting of a particular enumer-
ation of patterns over the data, subject to some computational limitations.
The term pattern goes beyond its traditional sense to include models or struc-
tures in the data. Historical data are used to discover regularities and improve
future decisions [22]. The data can consist of (say) a collection of time series
descriptions that can be learned to predict later events in the series.

Data mining involves fitting models to or determining patterns from ob-
served data. The fitted models play the role of inferred knowledge. Deciding
whether the model reflects useful knowledge or not is a part of the overall
KDD process for which subjective human judgment is usually required. Typ-
ically, a data mining algorithm constitutes some combination of the following
three components.

o The model: The function of the model (e.g., classification, clustering)
and its representational form (e.g., linear discriminants, decision trees).
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A model contains parameters that are to be determined from data for
the chosen function using the particular representational form or tool.

o The preference criterion: A basis for preference of one model or set of
parameters over another, depending on the given data. The criterion
is usually some form of goodness-of-fit function of the model to the
data, perhaps tempered by a smoothing term to avoid over-fitting, or
generating a model with too many degrees of freedom to be constrained
by the given data.

o The search algorithm: The specification of an algorithm for finding par-
ticular models or patterns and parameters, given the data, model(s),
and a preference criterion.

A particular data mining algorithm is usually an instantiation of the model-
preference-search components. Some of the common model functions in cur-
rent data mining practice include [13, 14]:

1. Classification: This model function classifies a data item into one of
several predefined categorical classes.

2. Regression: The purpose of this model function is to map a data item
to a real-valued prediction variable.

3. Clustering: This function maps a data item into one of several clusters,
where clusters are natural groupings of data items based on similarity
metrics or probability density models.

4. Rule generation: Here one mines or generates rules from the data. Asso-
ciation rule mining refers to discovering association relationships among
different attributes. Dependency modeling corresponds to extracting
significant dependencies among variables.

5. Summarization or condensation: This function provides a compact de-
scription for a subset of data. Data compression may play a significant
role here, particularly for multimedia data, because of the advantage it
offers to compactly represent the data with a reduced number of bits,
thereby increasing the database storage bandwidth.

6. Sequence analysis: It models sequential patterns, like time-series analy-
sis, gene sequences, etc. The goal is to model the states of the process
generating the sequence, or to extract and report deviation and trends
over time.

The rapid growth of interest in data mining [22] is due to the (i) advance-
ment of the Internet technology and wide interest in multimedia applications
in this domain, (ii) falling cost of large storage devices and increasing ease
of collecting data over networks, (iii) sharing and distribution of data over
the network, along with adding of new data in existing data repository, (iv)
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development of robust and efficient machine learning algorithms to process
this data, (v) advancement of computer architecture and falling cost of com-
putational power, enabling use of computationally intensive methods for data
analysis, (vi) inadequate scaling of conventional querying or analysis meth-
ods, prompting the need for new ways of interaction, (vii) strong competitive
pressures from available commercial products, etc.

The notion of scalability relates to the efficient processing of large datasets,
while generating from them the best possible models. The most commonly
cited reason for scaling up is that increasing the size of the training set often
increases the accuracy of learned classification models. In many cases, the
degradation in accuracy when learning from smaller samples stems from over-
fitting, presence of noise, and existence of large number of features. Again,
scaling up to very large datasets implies that fast learning algorithms must
be developed. Finally, the goal of the learning (say, classification accuracy)
must not be substantially sacrificed by a scaling algorithm. The three main
approaches to scaling up include [23]

o designing a fast algorithm: improving computational complexity, opti-
mizing the search and representation, finding approximate solutions to
the computationally complex (NP complete or NP hard) problems, or
taking advantage of the task’s inherent parallelism;

e partitioning the data: dividing the data into subsets (based on instances
or features), learning from one or more of the selected subsets, and
possibly combining the results; and

® using a relational representation: addresses data that cannot feasibly be
treated as a single flat file.

Some examples of mined or discovered patterns include
1. Classification:

(a) People with age less than 25 and salary > 40K drive sports cars.

(b) Set of images that contain a car as an object.
2. Association rules:

(a) 80% of the images containing a car as an object also contain a blue
sky.

(b) 98% of people who purchase diapers also buy baby food.
3. Similar time sequences:

(a) Stocks of companies A and B perform similarly.

(b) Sale of furniture increases with the improvement of real estate busi-
ness.
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4. Outlier detection:

(a) Residential customers for a telecom company, with businesses at
home.

(b) Digital radiographs of lungs, with suspicious spots.

1.3 DATA COMPRESSION

With growing demands of various applications, storage requirements of digital
data are growing explosively. Some examples, demonstrating this, are given
below.

e A high-quality audio signal requires approximately 1.5 megabits per
second for digital representation and storage.

o A digitized 14 x 17 square-inch radiograph, scanned at 70 um, occupies
nearly 45 megabytes of storage.

o A television-quality low-resolution color video of 30 frames per second,
with each frame containing 640 x 480 pixels (24 bits per color pixel),
needs more than 210 megabits per second of storage. As a result, a
digitized one hour color movie would require approximately 95 gigabytes
of storage.

o The storage requirement for the upcoming High-Definition-Television
(HDTV)-quality video of resolution 1280 x 720 at 60 frames per second
is many-fold. A digitized one-hour color movie of HDTV-quality video
will require approximately 560 gigabytes of storage.

e A small document collection in electronic form in a digital library system
may easily require to store several billion characters.

e The total amount of data spread over Internet sites is mind-boggling.

Although the cost of storage has decreased drastically over the past decade
due to significant advancement in the microelectronics and storage technology,
the requirement of data storage and data processing applications is growing
explosively to outpace this achievement. Hence data compression continues
to be a challenging area of research and development in both academia and
industry, particularly in the context of large databases.

Interestingly enough, most of the datatypes for practical applications such
as still image, video, voice, and text generally contain a significant amount
of superfluous and redundant information in their canonical representation.
Data redundancy may appear in different forms in the digital representation
of different categories of datatypes. A few examples are as follows.
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1. In English text files, common words (e.g., “is”, “are”, “the”) or simi-
lar patterns of character strings (e.g., ‘ze’, ‘th’, ‘ing’) are usually used
repeatedly. It is also observed that the characters in an English text
occur in a well-documented distribution, with letter “e” and “space”
being the most popular.

2. In numeric data files, often we observe runs of similar numbers or pre-
dictable interdependency amongst the numbers.

3. The neighboring pixels in a typical image are highly correlated to each
other, with the pixels in a smooth region of an image having similar
values.

4. Two consecutive frames in a video are often mostly identical when mo-
tion in the scene is slow.

5. Some audio data beyond the human audible frequency range are useless
for all practical purposes.

Data compression is the technique to reduce the redundancies in data repre-
sentation in order to decrease data storage requirements and, hence, commu-
nication costs when transmitted through a communication network [24, 25).
Reducing the storage requirement is equivalent to increasing the capacity of
the storage medium. If the compressed data are properly indexed, it may
improve the performance of mining data in the compressed large database as
well. This is particularly useful when interactivity is involved with a data
mining system. Thus the development of efficient compression techniques,
particularly suitable for data mining, will continue to be a design challenge
for advanced database management systems and interactive multimedia ap-
plications.

Depending upon the application criteria, data compression techniques can
be classified as lossless and lossy. In lossless methods we compress the data in
such a way that the decompressed data can be an exact replica of the original
data. Lossless compression techniques are applied to compress text, numeric,
or character strings in a database — typically, medical data, etc. On the other
hand, there are application areas where we can compromise with the accuracy
of the decompressed data and can, therefore, afford to lose some information.
For example, typical image, video, and audio compression techniques are lossy,
since the approximation of the original data during reconstruction is good
enough for human perception.

In our view, data compression is a field that has so far been neglected
by the data mining community. The basic principle of data compression
is to reduce the redundancies in data representation, in order to generate
a shorter representation for the data to conserve data storage. In earlier
discussions, we emphasized that data reduction is an important preprocessing
task in data mining. Need for reduced representation of data is crucial for
the success of very large multimedia database applications and the associated
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economical usage of data storage. Multimedia databases are typically much
larger than, say, business or financial data, simply because an attribute itself
in a multimedia database could be a high-resolution digital image. Hence
storage and subsequent access of thousands of high-resolution images, which
are possibly interspersed with other datatypes as attributes, is a challenge.
Data compression offers advantages in the storage management of such huge
data. Although data compression has been recognized as a potential area
for data reduction in literature [13], not much work has been reported so far
on how the data compression techniques can be integrated in a data mining
system.

Data compression can also play an important role in data condensation.
An approach for dealing with the intractable problem of learning from huge
databases is to select a small subset of data as representatives for learning.
Large data can be viewed at varying degrees of detail in different regions of
the feature space, thereby providing adequate importance depending on the
underlying probability density [26]. However, these condensation techniques
are useful only when the structure of data is well-organized. Multimedia
data, being not so well-structured in its raw form, leads to a big bottleneck
in the application of existing data mining principles. In order to avoid this
problem, one approach could be to store some predetermined feature set of
the multimedia data as an index at the header of the compressed file, and
subsequently use this condensed information for the discovery of information
or data mining.

We believe that integration of data compression principles and techniques
in data mining systems will yield promising results, particularly in the age of
multimedia information and their growing usage in the Internet. Soon there
will arise the need to automatically discover or access information from such
multimedia data domains, in place of well-organized business and financial
data only. Keeping this goal in mind, we intended to devote significant dis-
cussions on data compression techniques and their principles in multimedia
data domain involving text, numeric and non-numeric data, images, etc.

We have elaborated on the fundamentals of data compression and image
compression principles and some popular algorithms in Chapter 3. Then
we have described, in Chapter 9, how some data compression principles can
improve the efficiency of information retrieval particularly suitable for multi-
media data mining.

1.4 INFORMATION RETRIEVAL

Users approach large information spaces like the Web with different motives,
namely, to (i) search for a specific piece of information or topic, (ii) gain
familiarity with, or an overview of, some general topic or domain, and (iii)
locate something that might be of interest, without a clear prior notion of
what “interesting” should look like. The field of information retrieval devel-



INFORMATION RETRIEVAL 13

ops methods that focus on the first situation, whereas the latter motives are
mainly addressed in approaches dealing with exploration and visualization of
the data.

Information retrieval (28] uses the Web (and digital libraries) to access
multimedia information repositories consisting of mixed media data. The in-
formation retrieved can be text as well as image document, or a mixture of
both. Hence it encompasses both text and image mining. Information re-
trieval automatically entails some amount of summarization or compression,
along with retrieval based on content. Given a user query, the information
system has to retrieve the documents which are related to that query. The
potentially large size of the document collection implies that specialized in-
dexing techniques must be used if efficient retrieval is to be achieved. This
calls for proper indexing and searching, involving pattern or string matching.

With the explosive growth of the amount of information over the Web
and the associated proliferation of the number of users around the world, the
difficulty in assisting users in finding the best and most recent information
has increased exponentially. The existing problems can be categorized as the
absence of

e filtering: a user looking for some topic on the Internet receives too much
information,

e ranking of retrieved documents: the system provides no qualitative dis-
tinction between the documents,

o support of relevance feedback: the user cannot report her/his subjective
evaluation of the relevance of the document,

e personalization: there is a need of personal systems that serve the spe-
cific interests of the user and build user profile,

¢ adaptation: the system should notice when the user changes her/his
interests.

Retrieval can be efficient in terms of both (a) a high recall from the Inter-
net and (b) a fast response time at the expense of a poor precision. Recall is
the percentage of relevant documents that are retrieved, while precision refers
to the percentage of documents retrieved that are considered as relevant [29].
These are some of the factors that are considered when evaluating the rele-
vance feedback provided by a user, which can again be explicit or implicit. An
implicit feedback entails features such as the time spent in browsing a Web
page, the number of mouse-clicks made therein, whether the page is printed
or bookmarked, etc. Some of the recent generations of search engines involve
Meta-search engines (like Harvester, MetaCrawler) and intelligent Software
Agent technologies. The intelligent agent approach [30, 31] is recently gaining
attention in the area of building an appropriate user interface for the Web.

Therefore, four main constituents can be identified in the process of infor-
mation retrieval from the Internet. They are
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1. Indexing: generation of document representation.

2. Querying: expression of user preferences through natural language or
terms connected by logical operators.

3. Evaluation: performance of matching between user query and document
representation.

4. User profile construction: storage of terms representing user preferences,
especially to enhance the system retrieval during future accesses by the
user.

1.5 TEXT MINING

Text is practically one of the most commonly used multimedia datatypes in
day-to-day use. Text is the natural choice for formal exchange of information
by common people through electronic mail, Internet chat, World Wide Web,
digital libraries, electronic publications, and technical reports, to name a few.
Moreover, huge volumes of text data and information exist in the so-called
“gray literature” and they are not easily available to common users outside
the normal book-selling channels. The gray literature includes technical re-
ports, research reports, theses and dissertations, trade and business literature,
conference and journal papers, government reports, and so on [32]. Gray lit-
erature is typically stored in text (or document) databases. The wealth of
information embedded in the huge volumes of text (or document) databases
distributed all over is enormous, and such databases are growing exponentially
with the revolution of current Internet and information technology. The popu-
lar data mining algorithms have been developed to extract information mainly
from well-structured classical databases, such as relational, transactional, pro-
cessed warehouse data, etc. Multimedia data are not so structured and often
less formal. Most of the textual data spread all over the world are not very
formally structured either. The structure of textual data formation and the
underlying syntax vary from one language to another language (both machine
and human), one culture to another, and possibly user to user. Text mining
can be classified as the special data mining techniques particularly suitable
for knowledge and information discovery from textual data.

Automatic understanding of the content of textual data, and hence the
extraction of knowledge from it, is a long-standing challenge in artificial in-
telligence. There were efforts to develop models and retrieval techniques for
semistructured data from the database community. The information retrieval
community developed techniques for indexing and searching unstructured text
documents. However, these traditional techniques are not sufficient, for knowl-
edge discovery and mining of the ever-increasing volume of textual databases.

Although retrieval of text-based information was traditionally considered
to be a branch of study in information retrieval only, text mining is currently
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emerging as an area of interest of its own. This became very prominent with
the development of search engines used in the World Wide Web, to search
and retrieve information from the Internet. In order to develop efficient text
mining techniques for search and access of textual information, it is important
to take advantage of the principles behind classical string matching techniques
for pattern search in text or string of characters, in addition to traditional
data mining principles. We describe some of the classical string matching
algorithms and their applications in Chapter 4.

In today’s data processing environment, most of the text data is stored
in compressed form. Hence access of text information in the compressed
domain will become a challenge in the near future. There is practically no
remarkable effort in this direction in the research community. In order to
make progress in such efforts, we need to understand the principles behind
the text compression methods and develop underlying text mining techniques
exploiting these. Usually, classical text compression algorithms, such as the
Lempel-Ziv family of algorithms, are used to compress text databases. We
deal with some of these algorithms and their working principles in greater
detail in Chapter 3.

Other established mathematical principles for data reduction have also been
applied in text mining to improve the efficiency of these systems. One such
technique is the application of principal component analysis based on the
matrix theory of singular value decomposition. Use of latent semantic analy-
sis based on the principal component analysis and some other text analysis
schemes for text mining have been discussed in great detail in Section 9.2.

1.6 WEB MINING

Presently an enormous wealth of information is available on the Web. The
objective is to mine interesting nuggets of information, like which airline has
the cheapest flights in December, or search for an old friend, etc. Internet
is definitely the largest multimedia data depository or library that ever ex-
isted. It is the most disorganized library as well. Hence mining the Web is a
challenge.

The Web is a huge collection of documents that comprises (i) semistruc-
tured (HTML, XML) information, (ii) hyper-link information, and (iii) access
and usage information and is (iv) dynamic; that is, new pages are constantly
being generated. The Web has made cheaper the accessibility of a wider au-
dience to various sources of information. The advances in all kinds of digital
communication has provided greater access to networks. It has also created
free access to a large publishing medium. These factors have allowed people
to use the Web and modern digital libraries as a highly interactive medium.
However, present-day search engines are plagued by several problems like the
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e abundance problem, as 99% of the information is of no interest to 99%
of the people,

o limited coverage of the Web, as Internet sources are hidden behind search
interfaces,

e limited query interface, based on keyword-oriented search, and

o limited customization to individual users.

Web mining [27] refers to the use of data mining techniques to automat-
ically retrieve, extract, and evaluate (generalize or analyze) information for
knowledge discovery from Web documents and services. Considering the Web
as a huge repository of distributed hypertext, the results from text mining
have great influence in Web mining and information retrieval. Web data are
typically unlabeled, distributed, heterogeneous, semistructured, time-varying,
and high-dimensional. Hence some sort of human interface is needed to han-
dle context-sensitive and imprecise queries and provide for summarization,
deduction, personalization, and learning.

The major components of Web mining include

e information retrieval,
¢ information extraction,
e generalization, and

e analysis.

Information retrieval, as mentioned in Section 1.4, refers to the automatic
retrieval of relevant documents, using document indexing and search engines.
Information extraction helps identify document fragments that constitute the
semantic core of the Web. Generalization relates to aspects from pattern
recognition or machine learning, and it utilizes clustering and association rule
mining. Analysis corresponds to the extraction, interpretation, validation,
and visualization of the knowledge obtained from the Web.
Different aspects of Web mining have been discussed in Section 9.5.

1.7 IMAGE MINING

Image is another important class of multimedia datatypes. The World Wide
‘Web is presently regarded as the largest global multimedia data repository, en-
compassing different types of images in addition to other multimedia datatypes.
As a matter of fact, much of the information communicated in the real-world
is in the form of images; accordingly, digital pictures play a pervasive role in
the World Wide Web for visual communication. Image databases are typically
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very large in size. We have witnessed an exponential growth in the genera-
tion and storage of digital images in different forms, because of the advent
of electronic sensors (like CMOS or CCD) and image capture devices such as
digital cameras, camcorders, scanners, etc.

There has been a lot of progress in the development of text-based search
engines for the World Wide Web. However, search engines based on other
multimedia datatypes do not exist. To make the data mining technology suc-
cessful, it is very important to develop search engines in other multimedia
datatypes, especially for image datatypes. Mining of data in the imagery do-
main is a challenge. Image mining [33] deals with the extraction of implicit
knowledge, image data relationship, or other patterns not explicitly stored
in the images. It is more than just an extension of data mining to the im-
age domain. Image mining is an interdisciplinary endeavor that draws upon
expertise in computer vision, pattern recognition, image processing, image
retrieval, data mining, machine learning, database, artificial intelligence, and
possibly compression.

Unlike low-level computer vision and image processing, the focus of image
mining is in the extraction of patterns from a large collection of images. It,
however, includes content-based retrieval as one of its functions. While cur-
rent content-based image retrieval systems can handle queries about image
contents based on one or more related image features such as color, shape,
and other spatial information, the ultimate technology remains an impor-
tant challenge. While data mining can involve absolute numeric values in
relational databases, the images are better represented by relative values of
pixels. Moreover, image mining inherently deals with spatial information and
often involves multiple interpretations for the same visual pattern. Hence the
mining algorithms here need to be subtly different than in traditional data
mining.

A discovered image pattern also needs to be suitably represented to the
user, often involving feature selection to improve visualization. The informa-
tion representation framework for an image can be at different levels, namely,
pixel, object, semantic concept, and pattern or knowledge levels. Conven-
tional image mining techniques include object recognition, image retrieval,
image indexing, image classification and clustering, and association rule min-
ing. Intelligently classifying an image by its content is an important way to
mine valuable information from a large image collection {34].

Since the storage and communication bandwidth required for image data is
pervasive, there has been a great deal of activity in the international standard
committees to develop standards for image compression. It is not practical to
store the digital images in uncompressed or raw data form. Image compres-
sion standards aid in the seamless distribution and retrieval of compressed
images from an image repository. Searching images and discovering knowl-
edge directly from compressed image databases has not been explored enough.
However, it is obvious that image mining in compressed domain will become
a challenge in the near future, with the explosive growth of the image data



18 INTRODUCTION TO DATA MINING

depository distributed all over in the World Wide Web. Hence it is crucial
to understand the principles behind image compression and its standards, in
order to make significant progress to achieve this goal.

We discuss the principles of multimedia data compression, including that
for image datatypes, in Chapter 3. Different aspects of image mining are
described in Section 9.3.

1.8 CLASSIFICATION

Classification is also described as supervised learning [35]. Let there be a
database of tuples, each assigned a class label. The objective is to develop a
model or profile for each class. An example of a profile with good credit is
25 < age < 40 and income > 40K or married = “yes”. Sample applications
for classification include

e Signature identification in banking or sensitive document handling
{(match, no match).

o Digital fingerprint identification in security applications
(match, no match).

¢ Credit card approval depending on customer background and financial
credibility (good, bad).

e Bank location considering customer quality and business possibilities
(good, fair, poor).

¢ Identification of tanks from a set of images (friendly, enemy).

o Treatment effectiveness of a drug in the presence of a set of disease
symptoms (good, fair, poor).

e Detection of suspicious cells in a digital image of blood samples
(yes, no).

The goal is to predict the class C; = f(zi,.-.,Z,), where zy,...,z, are
the input attributes. The input to the classification algorithm is, typically, a
dataset of training records with several attributes. There is one distinguished
attribute called the dependent attribute. The remaining predictor attributes
can be numerical or categorical in nature. A numerical attribute has continu-
ous, quantitative values. A categorical attribute, on the other hand, takes up
discrete, symbolic values that can also be class labels or categories. If the de-
pendent attribute is categorical, the problem is called classification with this
attribute being termed the class label. However, if the dependent attribute
is numerical, the problem is termed regression. The goal of classification and
regression is to build a concise model of the distribution of the dependent
attribute in terms of the predictor attributes. The resulting model is used to
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assign values to a database of testing records, where the values of the pre-
dictor attributes are known but the dependent attribute is to be determined.
Classification methods can be categorized as follows.

1.

Decision trees [36], which divide a decision space into piecewise constant
regions. Typically, an information theoretic measure is used for assessing
the discriminatory power of the attributes at each level of the tree.

. Probabilistic or generative models, which calculate probabilities for hy-

potheses based on Bayes’ theorem [35].

. Nearest-neighbor classifiers, which compute minimum distance from in-

stances or prototypes [35].

. Regression, which can be linear or polynomial, of the form ax; +bzx2+c =

C; [37].

. Neural networks [38], which partition by nonlinear boundaries. These

incorporate learning, in a data-rich environment, such that all informa-
tion is encoded in a distributed fashion among the connection weights.

Neural networks are introduced in Section 2.2.3, as a major soft computing
tool. We have devoted the whole of Chapter 5 to the principles and techniques
for classification.

1.9

CLUSTERING

A cluster is a collection of data objects which are similar to one another within
the same cluster but dissimilar to the objects in other clusters. Cluster anal-
ysis refers to the grouping of a set of data objects into clusters. Clustering
is also called unsupervised classification, where no predefined classes are as-
signed [35)].

Some general applications of clustering include

Pattern recognition.

Spatial data analysis: creating thematic maps in geographic information
systems (GIS) by clustering feature spaces, and detecting spatial clusters
and explaining them in spatial data mining.

Image processing: segmenting for object-background identification.

Multimedia computing: finding the cluster of images containing flowers
of similar color and shape from a multimedia database.

Medical analysis: detecting abnormal growth from MRI.

Bioinformatics: determining clusters of signatures from a gene database.
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o Biometrics: creating clusters of facial images with similar fiduciary
points.

¢ Economic science: undertaking market research.

o WWW: clustering Weblog data to discover groups of similar access pat-
terns.

A good clustering method will produce high-quality clusters with high in-
traclass similarity and low interclass similarity. The quality of a clustering
result depends on both (a) the similarity measure used by the method and
(b) its implementation. It is measured by the ability of the system to discover
some or all of the hidden patterns.

Clustering approaches can be broadly categorized as

1. Partitional: Create an initial partition and then use an iterative control
strategy to optimize an objective.

2. Hierarchical: Create a hierarchical decomposition {dendogram) of the
set of data (or objects) using some termination criterion.

3. Density-based: Use connectivity and density functions.

4. Grid-based: Create multiple-level granular structure, by quantizing the
feature space in terms of finite cells.

Clustering, when used for data mining, is required to be (i) scalable, (ii)
able to deal with different types of attributes, (iii) able to discover clusters
with arbitrary shape, (iv) having minimal requirements for domain knowl-
edge to determine input parameters, (v) able to deal with noise and outliers,
(vi) insensitive to order of input records, (vii) of high dimensionality, and
(viii) interpretable and usable. Further details on clustering are provided in
Chapter 6.

1.10 RULE MINING

Rule mining refers to the discovery of the relationship(s) between the at-
tributes of a dataset, say, a set of transactions. Market basket data consist of
a set of items bought together by customers, one such set of items being called
a transaction. A lot of work has been done in recent years to find associations
among items in large groups of transactions [39, 40].

A rule is normally expressed in the form X = Y, where X and Y are sets of
attributes of the dataset. This implies that transactions which contain X also
contain Y. A rule is normally expressed as IF < some_conditions_satisfied >
THEN < predict_values_for_some_other_attributes >. So the association
X =Y is expressed as if X THEN Y. A sample rule could be of the form
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IF (salary > 12000) AND (unpaid_-loan = “no”)
THEN (select_for_loan = “yes”).

Rule mining can be categorized as

1. Association rule mining: An expression of the form X = Y, where X
and Y are subsets of all attributes, and the implication holds with a
confidence > ¢, where c is a user-defined threshold. This implies IF X
THEN Y, with at least ¢ confidence.

2. Classification rule mining: A supervised process uses a training dataset
to generate the rules. The objective is to predict a predefined class
or goal attribute, which can never appear in the antecedent part of a
rule. The generated rules are used to predict the class attribute of an
unknown test dataset.

3. Dependency rule modeling: This is also a supervised process, with the
goal attribute being chosen from a predefined set of attributes. While
non-goal attributes can occur only in the antecedent part of a rule, the
goal attributes can appear in either its consequent or antecedent parts.

Let us consider an example from medical decision-making. Often data may
be missing for various reasons; for example, some examinations can be risky
for the patient or contraindications can exist, an urgent diagnostic decision
may need to be made and some very informative but prolonged test results
may have to be excluded from the feature set, or appropriate technical equip-
ment may not be available. In such cases, the system can query the user
for additional information only when it is particularly necessary to infer a
decision. Again, one realizes that the final responsibility for any diagnos-
tic decision always has to be accepted by the medical practitioner. So the
physician may want to verify the justification behind the decision reached,
based on personal expertise. This requires the system to be able to explain
its mode of reasoning for any inferred decision or recommendation, preferably
in classification rule form, to convince the user that its reasoning is correct.

Important association rule mining techniques have been considered in detail
in Chapter 7. Generation of classification rules, in a modular framework, have
been described in Chapter 8.

1.11 STRING MATCHING

String matching is a very important area of research for successful develop-
ment of data mining systems, particularly for text databases and in mining of
data through the Internet by a text-based search engine. In this section, we
briefly introduce the string matching problem [24].

Let P =aja3...0,, and T = b1bs ... b, denote finite strings (or sequences)
of characters (or symbols) over a finite alphabet ¥, where m,n are positive
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integers greater than 0. In its simplest form, the pattern or string match-
ing problem consists of searching the text T to find the occurrence(s) of the
pattern P in T (m < n).

Several variants of the basic problem can be considered. The pattern may
consist of a finite set of sequences P = {P!, P?,..., P*}, where each P is a
pattern from the same alphabet and the problem is to search for occurrence(s)
of any one of the members of the set in the text. The patterns may be fully
or partially specified.

o Let $ denote a “don’t care” or “wild card’ character; then the pattern
A$B denotes a set of patterns AAB, ABB, ACB, etc. ~ that is, any
pattern that begins with A, ends with B, and has a single unspecified
character in the middle. The character § is called a “fixed length don’t
care” (FLDQC) character and may appear at any place in the pattern.

e A special character ¢ is used to denote the infinite set of patterns
¢ = {8$,9%,3%3,...} and is called a “variable length don’t care” (VLDC)
character.

Patterns containing special characters $ or ¢ are called partially specified;
otherwise, they are termed fully specified.

The string matching problem has been extensively studied in the litera-
ture. Several linear time algorithms for the ezract pattern matching problem
(involving fully specified patterns) have been developed by researchers [41]-
(43].

No linear time algorithm is yet known for the string matching problem with
a partially specified pattern. The best known result for pattern matching us-
ing a pattern consisting of wild card characters is by Fischer and Patterson [44]
with complexity O(nlog? mloglogmlogc), where c is the size of the alpha-
bet. Several two-dimensional exact pattern matching algorithms have been
proposed in Refs. [45]-[47].

There are other variation of the string matching when the pattern is not
fully specified. For example, finding the occurrences of similar patterns with
small differences in the text. Let us consider trying to find the occurrences of
patterns similar to (say) “birth,” with maximum difference in two character
positions in the text. Here the patterns “birth,” “broth,” “booth,” “worth,”
“dirty,” etc., will be considered to be valid occurrence in the text. All these
above variations of the string matching problem is usually known as Approz-
imate String Matching in the literature.

The string (or pattern) matching problem becomes even more interest-
ing when one attempts to directly match a pattern in a compressed text or
database. String matching finds widespread applications in diverse areas such
as text editing, text search, information retrieval, text mining, Web mining,
Bioinformatics, etc. String matching is a very essential component in text
analysis and retrieval in order to automatically extract the words, keywords,
and set of terms in a document, and also in query processing when used in
text mining.



BIOINFORMATICS 23

We have devoted Chapter 4 to string matching, encompassing a detailed
description of the classical algorithms along with a number of examples for
each of them.

1.12 BIOINFORMATICS

A gene is a fundamental constituent of any living organism. Sequence of
genes in a human body represent the signature(s) of the person. The genes
are portions of the deoxyribonucleic acid, or DNA for short. J. D. Watson and
F. H. Crick proposed a structure of DNA in 1953, consisting of two strands or
chains. Each of these chains is composed of phosphate and deoxyribose sugar
molecules joined together by covalent bonds. A nitrogenous base is attached to
each sugar molecule. There are four bases: adenine [A], cytosine [C], guanine
[G], and thymine [T]. From information theoretic perspective, the DNA can
be considered as a string or sequence of symbols. Each symbol is one of the
four above bases A, C, G, or T.

In the human body there are approximately 3 billion such base pairs. The
whole stretch of the DNA is called the genome of an organism. Obviously, such
a long stretch of DNA cannot be sequenced all at once. Mapping, search, and
analysis of patterns in such long sequences can be combinatorially explosive
and can be impractical to process even in today’s powerful digital computers.

Typically, a DNA sequence may be 40,000-100,000 base pairs long. In
practice, such a long stretch of DNA is first broken up into 400-2000 small
fragments. Each such small fragment typically consists of approximately 1000
base pairs. These fragments are sequenced experimentally, and then reassem-
bled together to reconstruct the original DNA sequence. Genes are encoded
in these fragments of DNA. Understanding what parts of the genome encode
which genes is a main area of study in computational molecular biology or
Bioinformatics [7, 48]. The results of string matching algorithms and their
derivatives have been applied in search, analysis and sequencing of DNA, and
other developments in Bioinformatics.

Microarray experiments are done to produce gene expression patterns, that
provide dynamic information about cell function. The huge volume of such
data, and their high dimensions, make gene expression data to be suitable
candidates for the application of data mining functions like clustering, visu-
alization, and string matching. Visualization is used to transform these high-
dimensional data to lower-dimensional, human understandable form. This
aids subsequent useful analysis, leading to efficient knowledge discovery. Mi-
croarray technologies are utilized to evaluate the level of expression of thou-
sands of genes, with applications in colon, breast, and blood cancer treatment
[48].

Proteins are made up of polypeptide chains of amino acids, which consist
of the DNA as the building block. General principles of protein structure,
stability, and folding kinetics are being explored in Bioinformatics, using lat-
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tice models. These models represent protein chains involving some param-
eters, and they allow complete explorations of conformational and sequence
spaces. Interactions among spatially neighboring amino acids, during folding,
are controlled by such factors as bond length, bond angle, electrostatic forces,
hydrogen bonding, hydrophobicity, entropy, etc. [49]. The determination of
an optimal conformation of a three-dimensional protein structure constitutes
protein folding. This has wide-ranging applications in pharmacogenomics, and
more specifically to drug design.

The different aspects of the applicability of data mining to Bioinformatics
are described in detail in Chapter 10.

1.13 DATA WAREHOUSING

A data warehouse is a decision support database that is maintained sepa-
rately from the organizations operational database. It supports information
processing by providing a solid platform of consolidated, historical data for
analysis. A data warehouse [13] is a subject-oriented, integrated, time-variant,
and nonvolatile collection of data in support of managements decision-making
process. Data warehousing deals with the process of constructing and using
data warehouses.

Database systems are of two types, namely, on-line transaction processing
systems, like OLTP; and decision support systems, like warehouses, on-line an-
alytical processing (OLAP), and mining. Historical data from OLTP systems
form decision support systems, the goal being to learn from past experiences.
While OLTP involves many short, update-intensive commands, a decision
support system requires fewer but complex queries. QLTP is a major task of
traditional relational database management systems. It involves day-to-day
operations like purchasing, inventory, banking, manufacturing, payroll, reg-
istration, accounting, etc. OLAP, on the other hand, is a primary task of a
data warehouse system. It concentrates on data analysis and decision making,
based on the content of the data warehouse.

A data warehouse is subject-oriented, being organized around major sub-
jects such as customer, product, and sales. It is constructed by integrating
multiple, heterogeneous data sources, like relational databases, flat files, and
on-line transaction records, in a uniform format. Data cleaning and data in-
tegration techniques are applied to ensure consistency in naming conventions,
encoding structures, attribute measures, etc., among different data sources.

While an operational database is concerned with current value data, the
data warehouse provides information from a historical perspective (e.g., past
5-10 years). Every key structure in the data warehouse contains an element
of time, explicitly or implicitly, although the key of operational data may or
may not contain the time element. Data warehouse constitutes a physically
separate store of data, transformed from the operational environment. Op-
erational update of data does not occur in the data warehouse environment.
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It does not require transaction processing, recovery, and concurrency control
mechanisms. It requires only two operations, namely, initial loading of data
and its access.

Traditional heterogeneous databases build wrappers or mediators on top
of the databases and adopt a query-driven approach. When a query is posed
to a client site, a meta-dictionary is used to translate the query into a form
appropriate for individual heterogeneous sites involved, and the results are
integrated into a global answer set. This involves complex information filter-
ing and a competition for resources. Data warehouses, on the other hand,
are high-performance systems providing a multidimensional view for complex
OLAP queries. Information from heterogeneous sources is integrated in ad-
vance, and it is stored in warehouses for direct query and analysis.

OLAP helps provide fast, interactive answers to large aggregate queries at
multiple levels of abstraction. A data cube allows such multidimensional data
to be effectively modeled and viewed in the n dimensions. Typical OLAP
operations include

1. Roll up (drill-up): Summarize data by climbing up hierarchy or by di-
mension reduction.

2. Drill down (roll down): Reverse of roll-up from higher level summary to
lower level summary or detailed data, or introducing new dimensions.

3. Slice and dice: Project and select.

4. Pivot (rotate): Reorient the cube, transform from 3D to a series of 2D
planes, and provide better visualization.

5. Drill across: Involving more than one fact table.

6. Drill through: From the bottom level of the cube to its back-end rela-
tional tables (using structured query languages SQL).

1.14 APPLICATIONS AND CHALLENGES

Some of the important issues in data mining include the identification of appli-
cations for existing techniques, and developing new techniques for traditional
as well as new application domains, like the Web, E-commerce, and Bioinfor-
matics. Some of the existing practical uses of data mining exist in (i) tracking
fraud, (ii) tracking game strategy, (iii) target marketing, (iv) holding on to
good customers, and (v) weeding out bad customers, to name a few. There
are many other areas we can envisage, where data mining can be applied.
Some of these areas are as follows.

e Medicine: Determine disease outcome and effectiveness of treatments,
by analyzing patient disease history to find some relationship between
diseases.
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® Molecular or pharmaceutical: Identify new drugs.
® Security: Face recognition, identification, biometrics, etc.

o Judiciary: Search and access of historical data on judgement of similar
cases.

¢ Biometrics: Positive identification of a person from a large image, fin-
gerprint or voice database.

e Multimedia retrieval: Search and identification of image, video, voice,
and text from multimedia database, which may be compressed.

e Scientific data analysis: Identify new galaxies by searching for subclus-
ters.

e Web site or Web store design, and promotion: Find affinity of visitors
to Web pages, followed by subsequent layout modification.

e Marketing: Help marketers discover distinct groups in their customer
bases, and then use this knowledge to develop targeted marketing pro-
grams.

e Land use: Identify areas of similar land use in an earth observation
database.

o Insurance: Identify groups of motor insurance policy holders with a high
average claim cost.

e City-planning: Identify groups of houses according to their house type,
value, and geographical location.

¢ Geological studies: Infer that observed earthquake epicenters are likely
to be clustered along continental faults.

The first generation of data mining algorithms has been demonstrated to
be of significant value across a variety of real-world applications. But these
work best for problems involving a large set of data collected into a single
database, where the data are described by numeric or symbolic features. Here
the data invariably do not contain text and image features interleaved with
these features, and they are carefully and cleanly collected with a particular
decision-making task in mind.

Development of new generation algorithms is expected to encompass more
diverse sources and types of data that will support mixed-initiative data min-
ing, where human experts collaborate with the computer to form hypotheses
and test them. The main challenges to the data mining procedure, to be
considered for future research, involve the following.

1. Massive datasets and high dimensionality. Huge datasets create combi-
natorially explosive search space for model induction, and they increase
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the chances that a data mining algorithm will find spurious patterns that
are not generally valid. Possible solutions include robust and efficient
algorithms, sampling approximation methods, and parallel processing.
Scaling up of existing techniques is needed — for example, in the cases
of classification, clustering, and rule mining.

. User interaction and prior knowledge. Data mining is inherently an

interactive and iterative process. Users may interact at various stages,
and domain knowledge may be used either in the form of a high-level
specification of the model or at a more detailed level. Visualization
of the extracted model is also desirable for better user interaction at
different levels.

. Quer-fitting and assessing the statistical significance. Datasets used for

mining are usually huge and available from distributed sources. As a
result, often the presence of spurious data points leads to over-fitting of
the models. Regularization and re-sampling methodologies need to be
emphasized for model design.

. Understandability of patterns. It is necessary to make the discoveries

more understandable to humans. Possible solutions include rule struc-
turing, natural language representation, and the visualization of data
and knowledge.

. Nonstandard and incomplete data. The data can be missing and/or

noisy. These need to be handled appropriately.

. Mized media data. Learning from data that are represented by a com-

bination of various media, like (say) numeric, symbolic, images, and
text.

. Management of changing data and knowledge. Rapidly changing data,

in a database that is modified or deleted or augmented, may make previ-
ously discovered patterns invalid. Possible solutions include incremental
methods for updating the patterns.

. Integration. Data mining tools are often only a part of the entire

decision-making system. It is desirable that they integrate smoothly,
both with the database and the final decision-making procedure.

. Compression. Storage of large multimedia databases is often required

to be in compressed form. Hence the development of compression tech-
nology, particularly suitable for data mining, is required. It would be
even more beneficial if data can be accessed in the compressed domain
[24].

Human Perceptual aspects for data mining. Many multimedia data min-
ing systems are intended to be used by humans. So it is a pragmatic
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approach to design multimedia systems and underlying data mining
techniques based on the needs and capabilities of the human percep-
tual system. The ultimate consumer of most perceptual information is
the ‘Human Perceptual System’. Primarily, the Human Perceptual Sys-
tem consists of the ‘Human Visual System’ and the ‘Human Auditory
System’. How these systems work synergistically is still not completely
understood and is a subject of ongoing research. We also need to focus
some attention in this direction so that their underlying principles can
be adopted while developing data mining techniques, in order to make
these more amenable and natural to the human customer.

11. Distributed database. Interest in the development of data mining sys-
tems in a distributed environment will continue to grow. In today’s
networked society, data are not stored or archived in a single storage
system unit. Problems arise while handling extremely large heteroge-
neous databases spread over multiple files, possibly in different disks
or across the Web in different geographical locations. Often combining
such data in a single very large file may be infeasible. Development
of algorithms for mining data from distributed databases will open up
newer areas of applications in the near future.

1.15 CONCLUSIONS AND DISCUSSION

Data mining is a good area of scientific study, holding ample promise for
the research community. Recently a lot of progress has been reported for
large databases, specifically involving association rules, classification, cluster-
ing, similar time sequences, similar text document retrieval, similar image
retrieval, outlier discovery, etc. Many papers have been published in major
conferences and leading journals. However, it still remains a promising and
rich field with many challenging research issues.

In this chapter we have provided an introduction to knowledge discovery
from databases and data mining. The major functions of data mining have
been described from the perspectives of machine learning, pattern recogni-
tion, and artificial intelligence. Handling of multimedia data, their compres-
sion, matching, and their implications to text and image mining have been
discussed. We have also stated principles of string matching, explaining how
they can be applied in text retrieval and in Bioinformatics for DNA search
type of operations. Different application domains and research challenges have
also been highlighted.

Since the databases to be mined are often very large, parallel algorithms
are desirable [50]. However, one has to explore a trade-off between com-
putation, communication, memory usage, synchronization, and the use of
problem-specific information, in order to select a suitable parallel algorithm
for data mining. One can also partition the data appropriately and distribute



CONCLUSIONS AND DISCUSSION 29

the subsets to multiple processors, learning concept descriptions in parallel
and then combining them. This corresponds to loosely coupled collections of
otherwise independent algorithms and is termed distributed data mining [51].
Traditional data mining algorithms require all data to be mined in a single,
centralized data warehouse. A fundamental challenge is to develop distributed
versions of data mining algorithms, so that data mining can be done while
leaving some of the data in different places. In addition, appropriate proto-
cols, languages, and network services are required for mining distributed data,
handling the meta-data and the mappings required for mining the distributed
data.

Spatial database systems involve spatial data — that is, point objects or
spatially extended objects in a 2D /3D or some high-dimensional feature space.
Knowledge discovery is becoming more and more important in these databases,
as increasingly large amounts of data obtained from satellite images, X-ray
crystallography, or other automatic equipment are being stored in the spa-
tial framework. Image mining holds promise in handling such databases.
Moreover, Bioinformatics offers applications in modeling or analyzing protein
structures that are represented as spatial data.

There exist plenty of scope for the use of soft computing in data mining,
because of the imprecise nature of data in many application domains. For
example, neural nets can help in the learning, the fuzzy sets for natural lan-
guage representation and imprecision handling, and the genetic algorithms for
search and optimization. However, not much work has been reported in the
use of soft computing tools in data mining. The relevance of soft comput-
ing lies in its ability to (i) handle subjectivity, imprecision, and uncertainty in
queries, (ii) model document relevance as a gradual instead of a crisp property,
(iii) provide deduction capability to the search engines, (iv) provide person-
alization and learning capability, and (v) deal with the dynamism, scale, and
heterogeneity of Web documents.

We take this opportunity to compile in this book the existing literature on
the various aspects of data mining, highlighting its application to multimedia
information and Bioinformatics. Soft computing, an emergent technology, has
also demonstrated ample promise in data mining. Chapter 2 focuses on an
introduction to soft computing, its tools, and finally its role in the different
functions of data mining. The fundamentals of multimedia data compression,
particularly text and image compression, are dealt with in Chapter 3. Chap-
ter 4 deals in-depth with various issues in string matching. Here we provide
examples to show how patterns are matched in general text, as well as how
they can be applied in DNA matching in Bicinformatics. The different tasks
of data mining like classification, clustering and association rules are covered
in Chapters 5, 6, and 7, respectively. The issue of rule generation and modu-
lar hybridization, in the soft computing framework, is described in Chapter 8.
Multimedia data mining, including text mining, image mining, and Web min-
ing, is dealt with in Chapter 9. Finally, certain aspects of Bioinformatics, as
an application of data mining, are discussed in Chapter 10.
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Soft Computing

2.1 INTRODUCTION

Data mining is a form of knowledge discovery essential for solving problems
in domains involving large volumes of data. The individual datasets may be
gathered and studied collectively for purposes other than those for which they
were originally created. New knowledge may also be obtained in the process,
while eliminating the cost of additional data collection. Besides, data often
exist in vast quantities over the Internet in an unstructured format. The
application of data mining facilitates systematic analysis in such cases and
helps the user in extracting relevant information. Sometimes different kinds
of data can be interspersed for better semantic representation, and often data
may be erroneous.

As an example, in medical data, numeric and textual information may be
interspersed, different symbols can be used with the same meaning, redun-
dancy often exists, and erroneous or misspelled medical terms are common.
Hence a robust preprocessing system is required in order to extract any kind
of knowledge from even medium-sized datasets.

Typically, real-life data must not only be cleaned of errors and redundancy,
but must also be organized in a fashion that makes sense to the problem.
There can exist imperfections in raw input data needed for knowledge ac-
quisition, mainly due to uncertainty, vagueness, and incompleteness. While
incompleteness arises due to missing or unknown data, uncertainty (or vague-
ness) can be caused by errors in physical measurements due to incorrect mea-
suring devices or by a mixture of noisy and pure signals.

35



36 SOFT COMPUTING

Soft computing is a consortium of methodologies that works synergistically
and provides, in one form or another, flexible information processing capa-
bility for handling real-life ambiguous situations [1]. Its aim is to exploit
the tolerance for imprecision, uncertainty, approximate reasoning, and par-
tial truth in order to achieve tractability, robustness, and low-cost solutions.
The guiding principle is to devise methods of computation that lead to an
acceptable solution at low cost, by seeking for an approximate solution to an
imprecisely or precisely formulated problem [2].

Recently, various soft computing methodologies have been applied to han-
dle the different challenges posed by data mining [3]. The main constituents of
soft computing, at this juncture, include fuzzy logic, neural networks, genetic
algorithms, rough sets, and signal processing tools such as wavelets. Each
of them contribute a distinct methodology for addressing problems in its do-
main. This is done in a cooperative, rather than a competitive, manner. The
result is a more intelligent and robust system providing a human-interpretable,
low-cost, approximate solution, as compared to traditional techniques.

This chapter provides an overview of the available literature on data min-
ing, which is scarce, in the soft computing framework [3]. An introduction
to soft computing and its constituent tools are provided in Section 2.2. Sec-
tions 2.3-2.8 explain the role of the different soft computing tools and their
hybridizations, categorized on the basis of different data mining functions im-
plemented. The utility and applicability of different soft computing method-
ologies is highlighted. It may be mentioned that there is no universally best
data mining method; choosing particular soft computing tool(s) or some com-
bination with traditional methods is entirely dependent on the particular ap-
plication, and it requires human interaction to decide on the suitability of an
approach.

Fuzzy sets provide a natural framework for the process in dealing with
uncertainty or imprecise data. Generally, they are suitable for handling the
issues related to understandability of patterns, incomplete and noisy data,
and mixed media information and human interaction and can provide ap-
proximate solutions faster. Neural networks are nonparametric and robust
and exhibit good learning and generalization capabilities in data-rich envi-
ronments. Genetic algorithms (GAs) provide efficient search algorithms to
optimally select a model, from mixed media data, based on some preference
criterion or objective function. Rough sets are suitable for handling differ-
ent types of uncertainty in data. Neural networks and rough sets are widely
used for classification and rule generation. Application of wavelet-based signal
processing techniques is new in the area of soft computing. Wavelet transfor-
mation of a signal results in decomposition of the original signal in different
multiresolution subbands [4, 5]. This is useful in dealing with compression
and retrieval of data, particularly images. Other approaches like case-based
reasoning [6] and decision trees |7, 8] are also widely used to solve data mining
problems.
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Section 2.9 concludes the chapter. Some challenges to data mining and the
possible application of soft computing methodologies are indicated.

2.2 WHAT IS SOFT COMPUTING?

Usually the primary considerations of traditional computing are precision,
certainty, and rigor. We distinguish this as “hard” computing. In contrast,
the principal notion in soft computing is that precision and certainty carry
a cost; and that computation, reasoning, and decision-making should exploit
(wherever possible) the tolerance for imprecision, uncertainty, approximate
reasoning, and partial truth for obtaining low-cost solutions. This leads to
the remarkable human ability of understanding distorted speech, deciphering
sloppy handwriting, comprehending the nuances of natural language, sum-
marizing text, recognizing and classifying images, driving a vehicle in dense
traffic, and, more generally, making rational decisions in an environment of
uncertainty and imprecision. The challenge, then, is to exploit the tolerance
for imprecision by devising methods of computation that lead to an accept-
able solution at low cost. This, in essence, is the guiding principle of soft
computing [1].

There are ongoing efforts to integrate artificial neural networks (ANNs),
fuzzy set theory, genetic algorithms (GAs), rough set theory and other method-
ologies in the soft computing paradigm. Hybridization [2, 9] exploiting the
characteristics of these theories include neuro-fuzzy, rough-fuzzy, neuro-genetic,
fuzzy-genetic, neuro-rough, rough-neuro-fuzzy approaches. However, among
these, neuro-fuzzy computing is the most visible. Let us now begin our dis-
cussion by pointing out the relevance of soft computing.

2.2.1 Relevance

The traditional hard computing paradigm is seldom suitable for many real-life
problems. Let us illustrate it with an example. Suppose that X is driving a
car and X watches a “red light” (traffic signal). X has to stop. So X has to
decide when to press the brake and how strongly. In a “precise framework,”
the steps followed by X may be to find the distance of the car from the
“light,” and then, depending on the current speed of the car, press the brake.
To realize this, the car should be provided with a laser-gun-type arrangement
so that the distance can be obtained. X should also know a set of rules of the
form
“If the car is at a distance of d ft and moving at a speed of s ft/s, then press
the brake with p poundal for t seconds right now.”

This is a precise rule governed by the laws of physics. Hence, if the brake
is applied according to such rules, the car will stop where X wants it to.
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Theoretically, such concepts are fine, but impractical because of the following
reasons:

o The addition of a laser gun to a car increases its cost.

o The number of precise rules required will be too great to realize in a
practical system.

e For the sake of argument, even if we assume that we know the rules to
be followed, application of the brakes following the rule will be a very
difficult task.

Precise solutions are not always feasible. In fact, we do not need a precise
solution to such a problem. The exact position where the car stops is not
important, but it should stop before the “red light” and should not hit any
other car standing ahead of it. Hence an approximate idea about the distance
of the car from the car or traffic signal ahead and the speed of the car should
be enough. Under this situation X can control the car using rules of the
form “If the car is moving very fast and the ‘red light’ is close, then press
the brake pretty hard.” We can easily say that the action is purely guided by
the intuition of an individual, the resultant decision being taken in imprecise
terms.

Note that the rule has three vague clauses “very fast,” “close,” and “pretty
hard.” These make the rule an imprecise one, and it will generate an ap-
proximate solution to the problem. The solution is less expensive and fast
{real-time) also. This is one facet of what the soft computing paradigm for
emulating the human-like decision making (also, a real-world computing sys-
tem) attempts to achieve. Thus, to achieve higher machine IQ, the system
should have the capability of modeling vagueness and making approximate
decisions on that basis. Fuzzy sets are good for handling this aspect of soft
computing. In fact, this distinguished characteristic of fuzzy sets led to the
emergence of soft computing.

Let us now make the driving problem a bit more complex. Suppose that
X is driving on a very crowded road and has to reach the destination D.
From the present coordinate of X, there are a couple of alternative paths
to reach D. Depending on the traffic conditions, X should try to pick up an
optimal path. Note that the traffic conditions (traffic flows in either direction,
number of traffic signals that will appear on a path, raining or clear, etc.)
change with time, and hence what X thinks as the optimal path now may
not remain optimal after some time. Consequently, X has to dynamically
(adaptively) change the route. Human beings make approximate decisions for
such problems on the basis of their experience (learning from previous driving
experiences). If we want an intelligent system to achieve this capability, it
should have the ability to learn from experience and examples. Artificial
neural networks are adaptive systems and can deal with this aspect of the
problem.
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Any artificial neural network (ANN) that can be used for handling the
problem just mentioned must be fed with relevant information. In other
words, the ANN system has to be trained with adequate number of examples.
The popular gradient descent (say, backpropagation)-type learning algorithms
are usually very slow in learning and may get stuck at some local minimum.
Genetic algorithms (GAs), in such situations, may be very effectively used
for learning. If the number of free parameters of the network is large, GAs
may also become slow, but for GA-based learning, the chance of getting stuck
to a local minimum would be low. Consequently, we can expect a better
generalization ability of the network.

In the remaining part of this section we present the basics of the different
soft computing tools.

2.2.2 Fuzzy sets

We are continuously having to recognize people, objects, handwriting, voice,
images, and other patterns, using distorted or unfamiliar, incomplete, oc-
cluded, fuzzy, and inconclusive data, where a pattern should be allowed to
have membership or belongingness to more than one class. This is also very
significant in (say) medical diagnosis, where a patient afflicted with a certain
set of symptoms can be simultaneously suffering from more than one disease.
Again, the symptoms need not necessarily be strictly numerical. It would be
in natural terms, defined as linguistic and/or set variables such as very high,
more or less low, between 50°C' and 55°C. This is how the concept of fuzziness
comes into the picture.

Let us explain the concept of membership with an example. You ask a
friend to meet you at 10 a.m. tomorrow. It is highly likely that your friend
will arrive any time around 10 a.m., say, from 9.55 a.m. to 10.05 a.m. This
defines the concept of a membership function along the time axis, with a peak
(membership of 1) at 10 a.m. sharp having a bandwidth of 10 min. As you
move away either side from the peak, the membership approaches the value
0. The bandwidth, again, is problem- and context-dependent. Hence if the
person is serious, the bandwidth would be less, whereas otherwise the band-
width would usually be more. Thus we see that although 10 a.m. is a crisp
concept with {0,1} hard characterizing function, in reality it becomes fuzzy
with [0, 1] graded membership function. One may note that the membership
value reflects the degree of compatibility or similarity of an event with an im-
precise concept representing a fuzzy set, whereas the probability of an event
is related to the number of times it occurs (i.e., its frequency).

Fuzzy sets were introduced in 1965 by Zadeh [10] as a new way of repre-
senting vagueness in everyday life. This theory provides an approximate and
yet effective means for describing the characteristics of a system that is too
complex or ill-defined to admit precise mathematical analysis [11, 12]. The
fuzzy approach is based on the premise that the key elements in human think-
ing are not just numbers but can be approximated to tables of fuzzy sets, or,



40 SOFT COMPUTING

in other words, classes of objects in which the transition from membership
to nonmembership is gradual rather than abrupt. Much of the logic behind
human reasoning is not the traditional two-valued or even multivalued logic,
but logic with fuzzy truths, fuzzy connectives, and fuzzy rules of inference.

Fuzzy set theory is reputed to handle, to a reasonable extent, uncertainties
(arising from deficiencies of information) in various applications particularly
in decision-making models under different kinds of risks, subjective judgment,
vagueness, and ambiguity. The deficiencies may result from various reasons,
namely, incomplete, imprecise, not fully reliable, vague, or contradictory in-
formation depending on the problem. Since this theory is a generalization of
the classical set theory, it has greater flexibility to capture various aspects of
incompleteness or imperfection in information about a situation.

The use of linguistic variables may be viewed as a form of data compression,
which can be termed granulation [1]. The same effect can also be achieved
by conventional quantization. However, in the case of quantization the values
are intervals, whereas in the case of granulation the values are overlapping
fuzzy sets. The advantages of granulation over quantization are that

e It is more general.
e It mimics the way in which humans interpret linguistic values.

o The transition from one linguistic value to a contiguous linguistic value
is gradual rather than abrupt, resulting in continuity and robustness.

Again, the uncertainty in classification or clustering of patterns may arise
from the overlapping nature of the various classes. This overlapping may result
from fuzziness or randomness. In the conventional classification technique, it
is usually assumed that a pattern belongs to only one class. This is not
necessarily realistic physically, and certainly not mathematically. A pattern
can and should be allowed to have degrees of membership in more than one
class. It is therefore necessary to convey this information while classifying a
pattern or clustering a dataset.

Let us now consider the problem of processing and recognizing a gray tone
image pattern. In a conventional vision system, each operation in low level,
middle level, and high level involves crisp decisions to make regions, features,
primitives, relations, and interpretations crisp. Since the regions in an im-
age are not always crisply defined, uncertainty can arise at every phase of
recognition tasks. Therefore it becomes convenient and natural and may be
appropriate to avoid committing ourselves to specific (hard) decision by al-
lowing the segments or contours to be fuzzy subsets of the image; the subsets
are characterized by the possibility (degree) of a pixel belonging to them.

A fuzzy set A in a space of points R = {r} is a class of events with a
continuum of grades of membership, and it is characterized by a membership
function p4(r) that associates with each element in R a real number in the
interval [0, 1] with the value of u4(r) at r representing the grade of member-
ship of r in A. Formally, a fuzzy set A with its finite number of supports
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T1,72,...,Ty i8 defined as a collection of ordered pairs

A = {(palr),m)i=1,2,...,n}
{(ealdy i =1,2,...,n},

where the support of A is an ordinary subset of R and is defined as
S(A) = {rjr € R and pa(r) > 0}.

Here p;, the grade of membership of r; in A, denotes the degree to which an
event r; may be a member of A or belong to A. Note that p; = 1 indicates
the strict containment of the event r; in A. If, on the other hand, r; does not
belong to A, then u; = 0.

If the support of a fuzzy set is only a single point ry € R, then

A=4
1
is called a fuzzy singleton. Thus A = (1/ry), for 41 = 1, would obviously
denote a nonfuzzy singleton.
In terms of the constituent singletons the fuzzy set A with its finite number

of supports ry,72,...,7, can also be expressed in union form as
= 1 H2 Bn
A= aF TR
= ZirL:’ Z=1,2,...,TL (21)
= Uilr‘f,izl,z...,n,

where the + sign denotes the union.

Fuzzy logic is based on the theory of fuzzy sets and, unlike classical logic,
aims at modeling the imprecise (or inexact) modes of reasoning and thought
processes (with linguistic variables) that play an essential role in the remark-
able human ability to make rational decisions in an environment of uncertainty
and imprecision. This ability depends, in turn, on our ability to infer an ap-
proximate answer to a question based on a store of knowledge that is inexact,
incomplete, or not totally reliable. In fuzzy logic, everything, including truth,
is a matter of degree [13]. Zadeh has developed a theory of approximate rea-
soning based on fuzzy set theory. By approximate reasoning we refer to a type
of reasoning that is neither very exact nor very inexact. This theory aims at
modeling the human reasoning and thinking process with linguistic variables
[11] in order to handle both soft and hard data, as well as various types of
uncertainty. Many aspects of the underlying concept have been incorporated
in designing decision-making systems [14, 15].

Assignment of membership functions of a fuzzy subset is subjective in na-
ture and reflects the context in which the problem is viewed. It cannot be
assigned arbitrarily. In many cases, it is convenient to express the membership
function of a fuzzy subset in terms of standard S and n functions. Note that
fuzzy membership function and probability density function are conceptually
different.
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S(r, o, B, ¢)
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Fig. 2.1 Standard S function.
2.2.2.]1 Membership functions 1t is frequently convenient to employ stan-

dardized functions with adjustable parameters (e.g., the S and 7 functions)
which are defined in the following equations (see also Fig. 2.1):

S(r; a,8,¢) = 0 forr<a
= 2(£=2)? fora<r<g 2.2)
= 1-2(£=£)? forf<r<ec ’
=1 forr > c.
w(r; ¢,A) = S(r;e—Aec—2,0) forr <c¢ (2.3)

1-S8(rjc,c+5,¢+A) forr >c.

In S(r; a, B,c), the parameter 3, 8 = (a+c)/2, is the crossover point, that is,
the value of r at which S takes the value 0.5. In 7(r;c, A), X is the bandwidth,
that is, the distance between the crossover points of 7, while c is the central
point at which 7 is unity.

Let us consider the linguistic variable age (z). Here the linguistic values
young and old play the role of primary fuzzy sets which have a specified
meaning, for example,

Hyoung = 1— 5(20,30,40), (2.4)

tota = S(50,60,70), (2.5)

where the S and 7 functions are defined by Eqgs. (2.2) and (2.3), and pyoung
and p,ig denote the membership functions of young and old, respectively.
In pattern recognition problems we often need to represent a class with
fuzzy boundary in terms of a m function. A representation for such a 7
! function, with range [0,1] and r € IR™, may be given as [2]

2
2(1—”%—91) , for 3 <|lr—c|l<A
. - 2
T(red) =4 1 _9 (ﬂ__ur—c ) , for0<|lr—cl| <3 (2:6)

X
0, otherwise,
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Fig. 22 = function when r € R®.

where X > 0 is the radius of the 7 function with ¢ as the central point and |}.||
denotes the Euclidean norm. This is shown in Fig. 2.2 for r € IR?. Note that
when the pattern r lies at the central point ¢ of a class, then |jr —¢}j = 0 and
its membership value is maximum, that is, 7(¢; ¢, A) = 1. The membership
value of a point decreases as its distance from the central point ¢ (i.e., {lr—c]|)
increases. When |jr — ¢|| = A/2, the membership value of  is 0.5, and this is
called a crossover point.

2.2.2.2 Basic operations Basic operations related to fuzzy subsets A and B
of R having membership values pa(r) and pg(r), r € R respectively, are
summarized here [15].

e Aisequal to B (i.e., A= B) = pa(r) = pp(r), forall r € R.

e Ais a complement of B (i.e., A= B) = p4(r) = pg(r) = 1 — up(r) for
allr € R.

A is contained in B (A C B) = pa(r) < up(r) forall r € R.

The union of A and B (AU B) = paup(r) = V(pa(r), us(r)) for all
T € R, where V denotes maximum.

The intersection of A and B (AN B) = panp(r) = A(pa(r), us(r)) for
all r € R, where A denotes minimum.

We also have the modifiers not, very, and more or less. These are explained,
in terms of the linguistic value young, as follows:

Hnot young = 1- Hyoung> (27)
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Hvery young — (l“young)2) (28)

Hnot very young = 1- (Hyoung)zs (2'9)
—_ 0.5

Hmore or less young — (I-‘young) . (2'10)

2.2.3 Neural networks

There are millions of very simple processing elements or neurons in the brain,
linked together in a massively parallel manner. This is believed to be respon-
sible for the human intelligence and discriminating power. All information is
stored in a distributed fashion among the connection weights. There is also
a large amount of redundancy inherent among the connections, leading to a
graceful degradation of performance in case of any damage. Artificial neural
networks (ANNs) or connectionist models implement important aspects of a
pattern recognition system like robustness, adaptivity, speed, and learning.
An ANN learns through examples the discriminating characteristics among
various pattern classes, by reducing the error and automatically discovering
inherent relationships in a data-rich environment. No rules or programmed
information sequences need to be specified beforehand. This procedure bears
an analogy to how a baby learns to recognize objects, or perhaps learns to
speak.

Artificial neural networks (ANNs) [16]-[21] are signal processing systems
that try to emulate the behavior of biological nervous systems by providing
a mathematical model of combination of numerous neurons connected in a
network. These can be formally defined as massively parallel interconnections
of simple (usually adaptive) processing elements that interact with objects of
the real world in a manner similar to biological systems. ANNs attempt to
replicate the computational power (low-level arithmetic processing ability) of
biological neural networks and, thereby, hopefully endow machines with some
of the (higher-level) cognitive abilities that biological organisms possess (due
in part, perhaps, to their low-level computational prowess).

The origin of ANNs can be traced to the work of Hebb [22], where a local
learning rule was proposed. This rule assumed that correlations between the
states of two neurons determined the strength of the coupling between them.
Subsequently, a synaptic connection that was very active grew in strength and
vice versa.

The various models are designated by the network topology, node char-
acteristics, and the status updating rules. Network topology refers to the
structure of interconnections among the various nodes (neurons) in terms
of layers and/or feedback or feedforward links. Node characteristics mainly
specify the operations it can perform, such as summing the weighted inputs
incident on it and then amplifying or applying some aggregation operators
on it. The updating rules may be for weights and/or states of the processing
elements (neurons). Normally, an objective function, representing the status
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of the network, is defined such that its set of minima correspond to the set of
stable states of the network.

Tasks that neural networks can perform include pattern classification, clus-
tering or categorization, function approximation, prediction or forecasting, op-
timization, retrieval by content, and control. ANNs can be viewed as weighted
directed graphs in which artificial neurons are nodes and directed edges {with
weights) are connections between neuron outputs and neuron inputs. On the
basis of the connection pattern (architecture), ANNs can be grouped into two
categories:

e Feedforward networks, in which graphs have no loops — for example,
single-layer perceptron, multilayer perceptron, radial basis function net-
works, Kohonen network

o Recurrent (or feedback) networks, in which loops occur because of feed-
back connections — for example, Hopfield network, adaptive resonance
theory (ART) models

The computational neuron model proposed by McCulloch and Pitts [23] is
a simple binary threshold unit.

Thus z; (t+1)
where f(x)

O wi; () — 65),
1 if >0
0 otherwise,

and z; is the input of the jth neuron with threshold 8;. If the synaptic
weight w;; > 0, then it is called an excitatory connection; if wi; < 0, it is
viewed as an inhibitory connection. A synchronous assembly of McCulloch—
Pitts neurons is capable, in principle, of universal computation for suitably
chosen weights [17]. Such an assembly can perform any computation that an
ordinary digital computer can.

The adaptability of a neural network comes from its capability of learning
from “environments.” Broadly, there are three paradigms of learning: su-
pervised, unsupervised (or self-organized), and reinforcement. Sometimes,
reinforcement is viewed as a special case of supervised learning. Under each
category there are many algorithms. In supervised learning (learning with
a teacher), adaptation is done on the basis of direct comparison of the net-
work output with known correct or desired answer. Unsupervised learning
does not learn any specific input—output relation. Here the network is tuned
to the statistical regularities of the input data to form categories (or par-
titions) by optimizing, with respect to the free parameters of the network,
some task-independent measure of quality of the representation. The rein-
forcement learning, on the other hand, attempts to learn the input—output
mapping through trial and error with a view to maximizing a performance
index called reinforcement signal. Here the system only knows whether the
output is correct, but not what the correct output is.
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ANNSs are natural classifiers having resistance to noise, tolerance to dis-
torted images or patterns (ability to generalize), superior ability to recognize
partially occluded or degraded images or overlapping pattern classes or classes
with highly nonlinear boundaries, and potential for parallel processing. They
use nonparametric adaptive learning procedures, learn from examples, and
discover important underlying regularities in the task domain.

For example, consider the case of supervised classification. Here a pattern
is characterized by a number of features, each taking up different weights in
characterizing the classes. A multilayer perceptron in which the input layer
has neurons equal to the number of features and the output layer has neurons
equal to the number of classes can be used to tackle this classification problem.
Here the importance of different features will automatically be encoded in
the connection links during training. The nonlinear decision boundaries are
modeled, and class labels are assigned by taking collective decisions.

There has been widespread activity aimed at extracting the embedded
knowledge in trained ANNs in the form of symbolic rules [2, 24, 25]. This
serves to identify the attributes that, either individually or in a combination,
are the most significant determinants of the decision or classification. Since
all information is stored in a distributed manner among the neurons and their
associated connectivity, any individual unit cannot essentially be associated
with a single concept or feature of the problem domain.

Generally ANNs consider a fixed topology of neurons connected by links
in a predefined manner. These connection weights are usually initialized by
small random values. Knowledge-based networks [26, 27] constitute a special
class of ANNs that consider crude domain knowledge to generate the initial
network architecture, which is later refined in the presence of training data.
The use of knowledge-based nets helps in reducing the searching space and
time while the network traces the optimal solution. Typically, one extracts
causal factors and functional dependencies from the data domain for initial
encoding of the ANN [25, 28] and later generates refined rules from the trained
network.

2.2.3.1 Single-layer perceptron The concept of perceptron {29, 30] was one of
the most exciting developments during the early days of pattern recognition.
The classical (single-layer) perceptron, given two classes of patterns, attempts
to find a linear decision boundary separating the two classes.

A perceptron consists of a single neuron with adjustable weights, w;,j =
1,2,...,n, and threshold 6. Given an input vector = [z, Zs, ..., 2|7, the
net input to the neuron is

v= ijxj - 6. (2.11)
=1

The output y of the perceptron is +1 if v > 0 and is 0 otherwise. In a
two-class classification problem, the perceptron assigns an input pattern to
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one class if ¥ = 1 and to the other class if y = 0. The linear equation
> =1 w;z; — 8 = 0 defines the decision boundary (a hyperplane in the n-
dimensional input space) that halves the space. Rosenblatt [30] developed a
learning procedure to determine the weights and threshold in a perceptron,
given a set of training patterns. This algorithm is outlined as follows:

1. Initialize the weights and threshold to small random numbers.

2. Present a pattern vector [z1, 22, .. .,Zs)7 and evaluate the output of the
neuron.

3. Update the weights according to
w;(t + 1) = wi(t) + &(d — y)z;, (2.12)

where d is the desired output, t is the iteration number, and ¢ (0.0 <
€ < 1.0) is the learning rate (step size).

Note that learning occurs only when the perceptron makes an error. This
has an interesting explanation from the information theoretic perspective.
Usually we expect new information when there is occurrence of an error, and
hence it provides an opportunity for new learning.

Rosenblatt proved that when training patterns are drawn from two linearly
separable classes, the perceptron learning procedure converges after a finite
number of iterations. If the pattern space is not linearly separable, the per-
ceptron fails [31]. A single-layer perceptron is inadequate for situations with
multiple classes and nonlinear separating boundaries. Hence the invention of
the multilayer perceptron network.

2.2.3.2 Multilayer perceptron (MLP) using backpropagation of error 'The mul-
tilayer perceptron (MLP) (18] consists of multiple layers of simple, two-state,
sigmoid processing elements (nodes) or neurons that interact using weighted
connections. After a lowermost input layer there are one or more intermediate
hidden layers, followed by an output layer at the top. There exist no inter-
connections within a layer, while all neurons in a layer are fully connected to
neurons in adjacent layers.

An external input vector is supplied to the network by clamping it at the
nodes in the input layer. For conventional classification problems, during
training, the appropriate output node is clamped to state 1 while the others
are clamped to state 0. This is the desired output supplied by the teacher.
The number of units in the output layer H corresponds to the number of
output classes.

Consider the network given in Fig. 2.3. The total input 1';-"” received by
neuron j in layer h+1 is defined as

h+l Z yh h _ 0h+1 (213)



48

where y! is the state of the ith neuron in the preceding hth layer, w}; is the
weight of the connection from the ith neuron in layer h to the jth neuron
in layer h + 1 and 9;.“"1 is the threshold of the jth neuron in layer A + 1.
Threshold 0;.”'1 may be eliminated by giving the unit j in layer A + 1 an extra
input line with a fixed activity level of 1 and a weight of

The output of a neuron in any layer other than the input layer (h > 0) is
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a monotonic nonlinear function of its total input and is expressed as

1
1+ e %

Y;

For nodes in the input layer

where x? is the jth component of the input vector clamped at the input layer.

Learning consists of minimizing the error by updating the weights. It involves

searching a very large parameter space and therefore is usually rather slow.
The least mean square (LMS) error in output vectors, for a given network

o _ 0
yj—xja

weight vector w, is defined as

Bw) = 5 Y (ulh(w) — dip)?,
Jp
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where yfp (w) is the state obtained for output node j in layer H for input—
output pattern p and d;, is its desired state specified by the teacher. One
method for minimization of E(w) is to apply the method of gradient descent
by starting with any set of weights and repeatedly updating each weight by
an amount 5E

Aw;‘,- ) = —¢ a_u),: + aAw L (t—1), (2.17)
where the positive constant ¢ controls the descent, 0 < a < 1 is the damping
coefficient or momentum, and ¢ denotes the number of the iteration currently
in progress. Generally £ and o are set at constant values, but there exist
approaches that vary these parameters. Initially the connection weights w;»‘,-
between each pair of neurons ¢ in layer A and j in layer h + 1 are set to small
random values lying in the range [—0.5,0.5].

From Eqgs. (2.13)-(2.14) and (2.16), we have

OE _ OF dy; Oz; _ OFE o

dw;; By dz; dwy,; By,
For the output layer (h = H), we substitute in Eq. (2.18)
OE

PA-y) ur (2.18)

— =y —d,. 2.19
ay] y] 3 ( )
For the other layers using Eq. (2.13), we substitute in Eq. (2.18)
OFE dy, Oxi OF dyk wh
Yk Ok , 2.20
6yg Z Oyx dzy Oy; Z Byr dzy S (2.20)

where units j and k lie in layers h and A + 1, respectively.

During training, each pattern of the training set is used in succession to
clamp the input and output layers of the network. A sequence of forward
and backward passes using Eqs. (2.13)-(2.20) constitute a cycle, and such
a cycle through the entire training set is termed a sweep. After a number
of sweeps through the training data, the error F(w) in Eq. (2.16) may be
minimized. At this stage the network is supposed to have discovered (learned)
the relationship between the input and output vectors in the training samples.

In the testing phase the neural net is expected to be able to utilize the
information encoded in its connection weights to assign the correct output
labels for the test vectors that are now clamped only at the input layer. It
should be noted that the optimal number of hidden layers and the number
of units in each such layer are generally determined empirically, although
growing, pruning, and other optimization techniques are also in vogue.

2.2.3.3 Kohonen network The essential constituents of Kohonen neural net-
work model are as follows [19]:

® An array of neurons receiving coherent inputs, simultaneously, and com-
puting a simple output function.
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¢ A mechanism for comparing the neuronal outputs to select the neuron
producing maximum output.

o A local interaction between the selected neuron and its neighbors.
e An adaptive mechanism that updates the interconnection weights.

The self-organizing feature map (SOFM) is an unsupervised learning net-
work {19], which transforms p-dimensional input patterns to a g-dimensional
(usually ¢ = 1 or 2) discrete map in a topologically ordered fashion. In-
put points that are close in p-dimension are also mapped closely on the g¢-
dimensional lattice. Each lattice cell is represented by a neuron that has a
p-dimensional adaptable weight vector associated with it. With every input
the match with each weight vector is computed. Then the best matching
weight vector and some of its topological neighbors are adjusted to match the
input points a little better. Imitially, the process starts with a large neigh-
borhood; with passage of time (iteration), the neighborhood size is reduced
gradually. At a given time instant, within the neighborhood, the weight vector
associated with each neuron is not updated equally. The strength of inter-
action between the winner and a neighboring node is inversely related to the
distance (on the lattice) between them.

Consider the self-organizing network given in Fig. 2.4. Let M input signals
be simultaneously incident on each of an N x N array of neurons. The output
of the ith neuron is defined as

n(t) =0 |[mu@)]” =®) + > wu m(t — AL)], (2.21)
keS;

where x is the M-dimensional input vector incident on it along the connection
weight vector m;, k belongs to the subset S; of neurons having interconnec-
tions with the ith neuron, w;; denotes the fixed feedback coupling between
the kth and ith neurons, o{.] is a suitable sigmoidal output function, ¢ denotes
a discrete time index, and T stands for the transpose.

Initially the components of the m; values are set to small random values
lying in the range [0, 0.5]. If the best match between vectors m; and x occurs
at neuron ¢, then we have

|z — ml| = min ]z - mill, i=12,...,N? (2.22)
2

where ||.|| indicates the Euclidean norm.
The weight updating is given as [19]

. | my(t) + a(t) (x(t) —m,(t)) fori e N,
mit+1) = { m;(t) otherwise, (2.23)
where a(t) is a positive constant that decays with time and N, defines a topo-
logical neighborhood around the maximally responding neuron ¢, such that
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it also decreases with time. Different parts of the network become selectively
sensitized to different inputs in an ordered fashion so as to form a continuous
map of the signal space. After a number of sweeps through the training data,
with weight updating at each iteration obeying Eq. (2.23), the asymptotic
values of m; cause the output space to attain proper topological ordering.
This is basically a variation of unsupervised learning.

2234 Learning vector quantization (LVQ) Vector quantization can be seen
as a mapping from an n-dimensional Euclidean space into a finite set of pro-
totypes. Based on this principle, Kohonen proposed an unsupervised learning
algorithm, which is a special case of SOFM and is known as LVQ [19]. In
LVQ, only the weight vector associated with the winner node is updated with
every data point by Eq. (2.23). The topological neighborhood is not updated
here. Such a learning scheme, where all nodes compete to become the win-
ner, is termed competitive learning. It is essentially a clustering network that
does not care about preserving the topological order. Its main uses are for
clustering, classification, and image data compression [32].

There exists a family of LVQs, termed LVQ1 and LVQ2 [19]. These al-
gorithms are supervised learning schemes, essentially used as classifiers. The
basic idea behind LVQL1 is as follows. If the winner prototype m; has the same
class label as that of the data point @, then bring m; closer to x; otherwise,
move m; away from x. Nonwinner nodes are not updated. LVQ2, a modified
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Fig. 2.5 Radial basis function network.

form of LVQ1, is designed to make the learning scheme comply better with
Bayes’ decision-making philosophy (described in Section 5.3). This algorithm
considers the winner along with the runner-up (second winner).

2.2.3.5 Radial basis function network A radial basis function (RBF) network
[33, 34] consists of two layers as shown in Fig. 2.5. The connection weight
vectors of the input and output layers are denoted as p and w, respectively.
The basis {or kernel) functions in the hidden layer produce a localized response
to the input stimulus. The output nodes form a weighted linear combination
of the basis functions computed by the hidden nodes.

The input and output nodes correspond to the input features and output
classes, while the hidden nodes represent the number of clusters (specified by
the user) that partition the input space. Let @ = (z;,...,z;,...,2,) € R
and y = (y1,-..,%i,---,4) € R' be the input and output, respectively, and
let m be the number of hidden nodes.

The output u; of the jth hidden node, using the Gaussian kernel function
as a basis, is given by

N (e — t1s
(x — pj) gf" H3) , i=1,2...,m, (2.24)
203

U; = €xp [—

where « is the input pattern, p; is its input weight vector (i.e., the center of
the Gaussian for node j), and a;‘-' is the normalization parameter, such that
0 < u; < 1 (the closer the input is to the center of the Gaussian, the larger
the response of the node).

The output y; of the jth output node is

y=wiu, j=12,..,1, (2.25)
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where w; is the weight vector for this node, and u is the vector of outputs
from the hidden layer. The network performs a linear combination of the
nonlinear basis functions of Eq. (2.24).

The problem is to minimize the error

N

!
1
E=3 Do) Wi —din) (2.26)
p=1 j=1

where d; , and y; , are desired and computed output at the jth node for the
pth pattern, N is the size of the data set, and [ is the number of output nodes.

Learning in the hidden layer, typically, uses the c-means clustering algo-
rithm (described in Section 6.3.1.1). Let the cluster centers, so determined,
be denoted as p;, j = 1,...,m. The normalization parameter o; represents
a measure of the spread of data associated with each node.

Learning in the output layer is performed after the parameters of the basis
functions have been determined. The weights are typically trained using the
LMS algorithm given by

Aw; = —e(y; — dj)u, (2.27)

where € is the learning rate.

2,2.4 Neuro-fuzzy computing

The concept of ANNs was inspired by biological neural networks, which are
inherently nonlinear, adaptive, highly parallel, robust, and fault tolerant.
Fuzzy logic, on the other hand, is capable of modeling vagueness, handling
uncertainty, and supporting human-type reasoning. One may therefore nat-
urally think of judiciously integrating them by augmenting each other in or-
der to build a more intelligent information system, in neuro-fuzzy comput-
ing paradigm [2, 35, 36], with recognition performance better than those ob-
tained by the individual technologies. It incorporates both the generic and
application-specific merits of ANNs and fuzzy logic into the hybridization.

Both fuzzy systems and ANNs are soft computing approaches to modeling
expert behavior. The goal is to mimic the actions of an expert who solves
complex problems. A learning process can be part of knowledge acquisition.
In the absence of an expert, or sufficient time or data, one can resort to
reinforcement learning instead of supervised learning. If one has knowledge
expressed as linguistic rules, one can build a fuzzy system. On the other hand,
if one has data, or can learn from a simulation or the real task, ANNs are more
appropriate. The integration of neural and fuzzy systems leads to a symbiotic
relationship, in which fuzzy systems provide a powerful framework for expert
knowledge representation, while neural networks provide learning capabilities
and suitability for computationally efficient hardware implementations.

It has been proved [37] that (i) any rule-based fuzzy system may be approx-
imated by a neural net, and (ii) any neural net (feedforward, multilayered)
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may be approximated by a rule-based fuzzy system. Jang and Sun [38] have
shown that fuzzy systems are functionally equivalent to a class of radial basis
function (RBF) networks, based on the similarity between the local receptive
fields of the network and the membership functions of the fuzzy system.

Fuzzy systems can be broadly categorized into two families. The first
includes linguistic models based on collections of IP-THEN rules, whose an-
tecedents and consequents utilize fuzzy values. It uses fuzzy reasoning, and
the system behavior can be described in natural terms. The Mamdani model
[39] falls in this group. The knowledge is represented as

R': IF  z,is A} AND z,is A... AND z, is A%,
THEN 4 is B, (2.28)

where R'(i = 1,2,...,1) denotes the ith fuzzy rule, z;( = 1,2,...,n) is
the input, ¥* is the output of the fuzzy rule R, and A}, A?,..., A} Bi(i =
1,2,...,1) are fuzzy membership functions usually associated with linguistic
terms.

The second category, based on Sugeno-type systems [40], uses a rule struc-
ture that has fuzzy antecedent and functional consequent parts. This can be
viewed as the expansion of piecewise linear partition represented as

R: IF  x;is AL AND z;is AL... AND z,, is A%,
THEN #'=a} +aiz) +...+a'z,. (2.29)

The approach approximates a nonlinear system with a combination of several
linear systems, by decomposing the whole input space into several partial fuzzy
spaces and representing each output space with a linear equation. Such models
are capable of representing both qualitative and quantitative information and
allow relatively easier application of powerful learning techniques for their
identification from data. They are capable of approximating any continuous
real-valued function on a compact set to any degree of accuracy [41].

There is always a trade-off between readability and precision. If one is
interested in a more precise solution, then one is usually not so bothered
about its linguistic interpretability. Sugeno-type systems are more suitable in
such cases. Otherwise, the choice is for Mamdani-type systems.

Extraction of rules from neural nets enables humans to understand their
prediction process in a better manner. This is because rules are a form of
knowledge that human experts can easily verify, transmit, and expand. Rep-
resenting rules in netural form aids in enhancing their comprehensibility for
humans. This aspect is suitably handled using fuzzy set-based representa-
tions.

Neuro-fuzzy hybridization [2] is done broadly in two ways: a neural network
equipped with the capability of handling fuzzy information [termed fuzzy—
neural network (FNN)], and a fuzzy system augmented by neural networks
to enhance some of its characteristics like flexibility, speed, and adaptability
[termed neural-fuzzy system (NFS)).
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In an FNN either the input signals and/or connection weights and/or the
outputs are fuzzy subsets or a set of membership values to fuzzy sets (e.g.,
Refs. [42]-[44]). Usually, linguistic values (such as low, medium, and high) or
fuzzy numbers or intervals are used to model these. Neural networks with
fuzzy neurons are also termed FNNs because they are capable of processing
fuzzy information.

A neural-fuzzy system (NFS), on the other hand, is designed to realize
the process of fuzzy reasoning, where the connection weights of the network
correspond to the parameters of fuzzy reasoning (e.g., Refs. [45] and [46).
Using the backpropagation-type learning algorithms, the NFS can identify
fuzzy rules and learn membership functions of the fuzzy reasoning. Typically,
the NFS architecture has distinct nodes for antecedent clauses, conjunction
operators, and consequent clauses.

The state of the art for the different techniques of judiciously combining
neuro-fuzzy concepts involves synthesis at various levels. In general, these
methodologies can be broadly categorized as follows. Note that categories 1
and 3-5 relate to FNNs while category 2 refers to NFS.

1. Incorporating fuzziness into the neural net framework: fuzzifying the
input data, assigning fuzzy labels to the training samples, possibly fuzzi-
fying the learning procedure, and obtaining neural network outputs in
terms of fuzzy sets [44, 47, 43].

2. Designing neural networks guided by fuzzy logic formalism: designing
neural networks to implement fuzzy logic and fuzzy decision-making,
and to realize membership functions representing fuzzy sets [48]-[46].

3. Changing the basic characteristics of the neurons: neurons are designed
to perform various operations used in fuzzy set theory (like fuzzy union,
intersection, aggregation) instead of the standard multiplication and
addition operations {49, 50, 51].

4. Using measures of fuzziness as the error or instability of a network:
the fuzziness or uncertainty measures of a fuzzy set are used to model
the error or instability or energy function of the neural network-based
system [52].

5. Making the individual neurons fuzzy: the input and output of the neu-
rons are fuzzy sets and the activity of the networks, involving the fuzzy
neurons, is also a fuzzy process [42].

2.2.5 Genetic algorithms

Genetic algorithms (GAs) [53, 54] are adaptive and robust computational
search procedures, modeled on the mechanics of natural genetic systems. They
act as a biological metaphor and try to emulate some of the processes observed
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in natural evolution. While evolution operates on encodings of biological en-
tities in the form of a collection of genes called a chromosome, GAs operate
on string representation of possible solutions in terms of individuals or chro-
mosomes containing the features. The feature value, the string structure and
the string structure’s decoded value in case of a GA correspond to the allele,
genotype, and phenotype in natural evolution.

The components of a GA consist of

e Population of individuals

Encoding or decoding mechanism of the individuals

Objective function and an associated fitness evaluation criterion

Selection procedure

Genetic operators like recombination or crossover, mutation

Probabilities to perform the genetic operations
o Replacement technique
e Termination conditions

Let us consider, as an example, the optimization of a function

y= flzy,22,...,2p).

A binary vector is used as a chromosome to represent real values of the vari-
ables x;, with the length of the vector depending on the required precision.
A population is a set of individuals (chromosomes) representing the concate-
nated parameter set x1, Z2, ..., Zp, where each member refers to a coded pos-
sible solution. For example, a sample chromosome

0000/0100) . . . |1100

could correspond to z; = 0000, zo = 0100, and =, = 1100. The chromosomes
can be of fixed or variable size. Selection obeys the Darwinian survival of
the fittest strategy, with the objective function playing the role of Nature
{environment). Variation is introduced in the population through the genetic
operations like recombination (crossover) and mutation. Normally the initial
population is chosen randomly.

Encoding is used to convert parameter values into chromosomal representa-
tion. In case of continuous-valued parameters, a decimal-to-binary conversion
is used. For example, using a 5-bit representation, 13 is encoded as 01101. In
case of parameters having categorical values, a particular bit position in the
chromosomal representation is set to 1 if it comes from a certain category. For
example, the gender of a person can have values from {male, female}, such
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that male/female is represented by the string 10/01. These strings (represent-

ing the parameters of a problem) are concatenated to form a chromosome.
Decoding is the reverse of encoding. For a continuous-valued parameter

the binary representation is converted to a continuous value by the expression

bits_used—1, . i
Zi.—:o bit; x 2¢

lower_bound + obits_used _ |

* (upper _bound — lower_bound).

Hence 01101 in five bits (bits_used) is decoded back to 13, using lower_bound =
0 and upper_bound = 31. In case of categorical parameters, the value is found
by consulting the original mapping.

The fitness function provides a measure of a chromosome’s performance.
Selection gives more chance to better-fitted individuals, thereby mimicking the
natural selection procedure. Some of the popular selection techniques include
roulette wheel selection, stochastic universal sampling, linear normalization
selection, and tournament selection. The roulette wheel selection procedure
initially sums the fitness values (f;s) of all the N chromosomes in the pop-
ulation, and it stores them in slots sized accordingly. Let this sum be given
by total_fitness. The probability of selection p; for the ith chromosome is
expressed as f

1
b= Sotal fitness’ (2:30)
while the cumulative probability g¢; after inclusion of the ith chromosome is
given by

i=1

Selection is made by spinning the roulette wheel N times, on each occasion
generating a random number n, in [0, total_fitness]. This returns the first
chromosome whose fitness, when added to the fitness of the preceding popu-
lation members, is greater than or equal to n,. In rule form, we have

IF n, < q; THEN select the first chromosome,
ELSE select the ith chromosome such that ¢;_; < n, < g;.

For example, let there be five chromosomes with fitness values 40, 30, 18,
10, 2, having total_fitness = 100. These constitute slots sized 40%, 30%,
18%, 10%, and 2% of the area of the wheel. Each time one requires to select a
chromosome, for applying crossover or mutation, a simple spin of the roulette
wheel is made with n,.. Here, with n, = 45, the algorithm selects the second
chromosome, since 40 + 30 > 45.

Recombination or crossover is modeled by choosing mating pairs from the
selected chromosomes. Crossover probability p. is used to determine whether a
pair should be crossed over, and then the corresponding chromosome segments
are interchanged. A random number n,. is generated in the range [0,1]. If
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Tire < Pe, the corresponding chromosome pair is selected for crossover. Again,
crossover can be one point, two point, multipoint, or uniform. Let us consider,
as an example, two parent chromosomes zyryryry and abababab where z, y,
a, b are binary. In one-point crossover at the 6th bit involving the parent
chromosomes

ryzyzlyTy
ababalbab,

one generates the children
zyzyz|bab

ababalyzy.

Here the segment involving bits 6 to 8 is interchanged between the parents.
In case of two-point crossover at the 3rd and 6th bits, involving parent chro-
mosomes

zy|zyzlyry

ablaba|bab,

we obtain the children chromosomes
xylabalyzy

ablzyz|bab.

Here the segment constituting bits 3 to 5 is swapped between the parents to
generate the pair of offsprings.

Mutation is used to introduce diversity in the population. Mutation prob-
ability p,, determines whether a bit should be mutated, and then the corre-
sponding location is flipped. For example, a mutation at the 3rd bit would
transform the chromosome 001|000 to 00/0[000. Probabilities p. and p,, can
be fixed or variable, and they typically have values ranging between 0.6 to
0.9, and 0.001 to 0.01, respectively.

Let us consider a simple example related to minimizing the surface area
A of a solid cylinder, given radius r and height h, to illustrate the working
principle of GAs. Here the fitness function can be expressed as

A=2nxrxh+2rxr?=2msr(h+7).

We need to encode the parameters » and h in a chromosome. Using a 3-
bit representation, we demonstrate encoding, crossover, and mutation. For
r1 =3, hy =4 and r; = 4, ho = 3, we generate parent chromosomes 011|100
and 100|011 with A; = 132, A, = 176, respectively. Let there be one-point
crossover at bit 4, producing the children chromosomes 011|011 and 100|100.
This is decoded as 71, = 3, hyc = 3 and ro, = 4, hy. = 4, with A;, = 16.16
and As. = 28.72, respectively. Now, let there be mutation at bit 5 of the first
child. This generates the chromosome 0110|0|1, for vy, = 3 and hyem = 1,
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with Ajcm = 10.77. This is the minimum value of fitness obtained thus far.
Consecutive applications of the genetic operations of selection, crossover, and
mutation, up to termination, enable the minimization (optimization) of the
chosen fitness function.

The replacement techniques can be

1. Generational, where all the n individuals are replaced at a time by the
n children created by reproduction. Elitism is often introduced to retain
the best solution obtained so far.

2. Steady state, where m < n members are replaced at a time by the m
children reproduced.

The terminating criterion for the algorithm can be on the basis of
e execution for a fixed number of generations or iterations,
e a bound on the fitness value of the generated solution, or
e acquiring of a certain degree of homogeneity by the population.

GAs have been applied in diverse problems involving optimization, schedul-
ing, graph coloring, genetic programming, pattern recognition, image pro-
cessing, data mining, artificial immune systems, and financial prediction or
bidding strategies.

2.2.6 Rough sets

The theory of rough sets [55] has recently emerged as another major math-
ematical tool for managing uncertainty that arises from granularity in the
domain of discourse — that is, from the indiscernibility between objects in
a set. The intention is to approximate a rough (imprecise) concept in the
domain of discourse by a pair of ezact concepts, called the lower and upper
approximations. These exact concepts are determined by an indiscernibility
relation on the domain, which, in turn, may be induced by a given set of
attributes ascribed to the objects of the domain. The lower approximation is
the set of objects definitely belonging to the vague concept, whereas the up-
per approximation is the set of objects possibly belonging to the same. These
approximations are used to define the notions of discernibility matrices, dis-
cernibility functions, reducts, and dependency factors, all of which play a fun-
damental role in the reduction of knowledge. Figure 2.6 provides a schematic
diagram of a rough set. Let us now present some requisite preliminaries of
rough set theory.

An information system is a pair S =< U, A >, where U is a nonempty
finite set called the universe and A is a nonempty finite set of attributes {a}.
An attribute a in A can be regarded as a function from the domain U to some
value set V.
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Fig. 2.6 Lower and upper approximations in a rough set.

With every subset of attributes B C A, one can easily associate an equiv-
alence relation Ig on U:

Ig ={(z,y) e U: for every a€ B, a(z) = a(y)}.
Then Ig =\, ¢cp La-

IfXCU,thesets {z€ U :[z]p C X} and {z € U: [z]g N X # 0}, where
[z] g denotes the equivalence class of the object x € U relative to Ig, are called
the B-lower and B-upper approrimations of X in S and denoted by BX and
BX, respectively.

X(C U) is B-ezact or B-definable in S if BX = BX. It may be observed
that BX is the greatest B-definable set contained in X, and BX is the smallest
B-definable set containing X.

Let us consider, for example, an information system < U, {a} > where the
domain U consists of the students of a school, and there is a single attribute
a — that of “belonging to a class.” Then U is partitioned by the classes of the
school.

Now consider the situation when an infectious disease has spread in the
school, and the authorities take the two following steps.

1. If at least one student of a class is infected, all the students of that class
are vaccinated. Let B denote the union of such classes.

2. If every student of a class is infected, the class is temporarily suspended.
Let B denote the union of such classes.

Then B C B. Given this information, let the following problem be posed:

o Identify the collection of infected students. Clearly, there cannot be a unique
answer. But any set  that is given as an answer must contain B and at least
one student from each class comprising B. In other words, it must have B as
its lower approzimation and B as its upper approximation.

o I is then a rough concept or set in the information system < U, {a} >.
Further, it may be observed that any set I’ given as another answer is roughly
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equal to I, in the sense that both are represented (characterized) by B and
B.

The effectiveness of the theory of rough sets has been investigated in the
domains of artificial intelligence and cognitive sciences, especially for repre-
sentation of and reasoning with vague and/or imprecise knowledge, data clas-
sification and analysis, machine learning, and knowledge discovery [56]. Their
role in data mining is elucidated in Section 2.6, with particular reference to

rough clustering in Section 6.5.4.

2.2.7 Wavelets

Application of wavelets have had a growing impact in signal and image pro-
cessing over the last two decades. But wavelet is by no means a new theory,
and it existed in mathematics since 1909 when Haar discovered the Haar
transform. Since then, mathematicians have been working on wavelets, and
“wavelet analysis” used to be called “atomic decomposition” for a long time
[57]. The wave in physics is defined as a disturbance propagated in media,
typically as an oscillating function of time or space such as a sinusoid. The
wavelet can be considered a snapshot of a wave oscillating within a short
window of time or space. As a result, mathematically, the wavelet can be
considered as a function which is both oscillating and localized.

Representation of a signal using sinusoids is very effective for stationary
signals, which are statistically predictable and are time-invariant in nature.
Wavelet representation is found to be very effective for nonstationary signals,
which are not statistically predictable and time-varying in nature.

Variation of intensity to form edges is a very important visual characteristic
of an image. From signal theoretic perspective, discontinuities of intensities
occur at the edges in any image and hence it can be prominently visualized
by the human eye. The time and frequency localization property of wavelets
makes it attractive for analysis of images because of discontinuities at the
edges.

Wavelets are functions generated from one single function called the mother
wavelet by dilations (scalings) and translations (shifts) in time (frequency)
domain. If the mother wavelet is denoted by 1/(t), the other wavelets ¥%*(t)
for @ > 0 and a real number b can be represented as

w0 =220 (50) (2:32)

a

where a and b represent the parameters for dilations and translations in the
time domain. The parameter a causes contraction in time domain whena < 1
and expansion when a > 1. In Fig. 2.7, we illustrate a mother wavelet and its
contraction and dilation.

We discuss further details of wavelet transformation and its properties in
Section 3.8.3, and we describe how it can be applied for efficient image com-
pression. Its application to data clustering is provided in Section 6.5.3.
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Fig. 2.7 (a) Mother wavelet ¥(t). (b) ¥(t/a): 0<a <1l (c)¥(t/a): a>1.

2.3 ROLE OF FUZZY SETS IN DATA MINING

Fuzzy sets constitute the earliest and most widely reported constituent of soft
computing. As mentioned in Section 2.2.2, the modeling of imprecise and
qualitative knowledge as well as the transmission and handling of uncertainty
at various stages are possible through the use of fuzzy sets. In this section
we provide a glimpse of the available literature pertaining to the use of fuzzy
sets in data mining [3].

Knowledge discovery in databases is mainly concerned with identifying in-
teresting patterns and describing them in a concise and meaningful manner
[58]. Despite a growing versatility of knowledge discovery systems, there is
an important component of human interaction that is inherent to any pro-
cess of knowledge representation, manipulation, and processing. Fuzzy sets
are naturally inclined towards coping with linguistic domain knowledge and
producing more interpretable solutions.

The notion of interestingness, which encompasses several features such as
validity, novelty, usefulness, and simplicity, can be quantified through fuzzy
sets. Fuzzy dissimilarity-of a discovered pattern with a user-defined vocabu-
lary has been used as a measure of this interestingness [59]. As an extension
to the above methodology, unezpectedness can also be defined in terms of a
belief system, where if a belief b is based on previous evidence £, then d(b|¢)
denotes the degree of belief b. In soft belief systems, a weight w; is attached
to each belief b;. The degree of a belief may be measured with conditional
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probability, Dempster—Shafer belief function, or frequency of the raw data.
Here, the interestingness of a pattern X relative to a belief system B and
evidence £ may be formally defined as

I(X,B,€) = Y w;|d(b:| X, €) — d(b:l6)|. (2:33)

b;€EB

This definition of interestingness measures the amount by which the degrees
of belief change as a result of a new pattern X.

There is a growing indisputable role of fuzzy set technology in the realm of
data mining [60]. Various data browsers have been implemented using fuzzy
set theory [61]. Analysis of real-world data in data mining often necessitates
simultaneous dealing with different types of variables, namely, categorical,
symbolic, and numerical data. Pedrycz [62] discusses some constructive and
fuzzy set-driven computational vehicles of knowledge discovery and establishes
the relationship between data mining and fuzzy modeling. The role of fuzzy
sets is categorized below based on the different functions of data mining that
are modeled.

2.3.1 Clustering

Data mining aims at sifting through large volumes of data in order to reveal
useful information in the form of new relationships, patterns, or clusters, for
decision-making by a user [63]. Fuzzy sets support a focused search, speci-
fied in linguistic terms, through data. They also help discover dependencies
between the data in qualitative or semiqualitative format. In data mining,
one is typically interested in a focused discovery of structure and an eventual
quantification of functional dependencies existing therein. This helps pre-
vent searching for meaningless or trivial patterns in a database. Researchers
have developed fuzzy clustering algorithms for this purpose [64]. Russell and
Lodwick [65] have explored fuzzy clustering methods for mining telecommu-
nications customer and prospect databases to gain residential and business
customer market share.

Pedrycz has designed fuzzy clustering algorithms [66] using (a) contextual
information and (b) induced linguistic space, for better focusing of the search
procedure in KDD. Krishnapuram et al. [67] have developed a robust fuzzy
c-medoids algorithm for clustering Web data. Further details on these algo-
rithms are provided in Section 6.5.1.

2.3.2 Granular computing

Achieving focus is important in data mining because there are too many
attributes and values to be considered, which can result in combinatorial ex-
plosion. Most unsupervised data mining approaches try to achieve attribute
focus by first recognizing the most interesting features. Mazlack [68] suggests
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a converse approach of progressively reducing the dataset by partitioning and
eliminating the least important attributes to reduce intra-item dissonance
within the partitions. A soft focus is used to handle both crisp and imprecise
data. It works by progressive reduction of cognitive dissonance, leading to
an increase in useful information. The objective is to generate cohesive and
comprehensible information nuggets by sifting out uninteresting attributes. A
combined distance metric takes care of different types of attributes simulta-
neously, thus avoiding any taxonomic structure. Non-crisp values are handled
by granularization followed by partitioning.

Granular computing [69] is useful in finding meaningful patterns in data
by expressing and processing chunks of information (granules). These are re-
garded as essential entities in all cognitive pursuits geared toward establishing
meaningful patterns in data. Soft granules can be defined in terms of mem-
bership functions. Increased granularity reduces attribute distinctiveness, re-
sulting in loss of useful information, while finer grains lead to partitioning
difficulty. The concept of granular computing allows one to concentrate all
computational effort on some specific and problem-oriented subsets of a com-
plete database. It also helps split an overall computing effort into several
subtasks, leading to a modularization effect.

‘We deal with the classification aspect of granular computing in Section 5.4.6.
Modularization in soft computing, for data mining, is described in Section 8.3.

2.3.3 Association rules

An important area of data mining research deals with the discovery of asso-
ctation rules [70], which describe interesting association relationship among
different attributes. A boolean association involves binary attributes, a gen-
eralized association involves attributes that are hierarchically related, and a
quantitative association involves attributes that can take on quantitative or
categorical values. The use of fuzzy techniques has been considered to be one
of the key components of data mining systems because of their affinity with
human knowledge representation [71].

Wei and Chen [72] have mined generalized association rules with fuzzy
taxonomic structures. A crisp taxonomy assumes that a child belongs to its
ancestor with degree one. A fuzzy taxonomy is represented as a directed
acyclic graph, each of whose edges represents a fuzzy IS-A relationship with
degree u (0 < p < 1). The partial belonging of an item in a taxonomy is
taken into account while computing the degrees of support and confidence.

Au and Chan [73] utilize an adjusted difference between observed and ex-
pected frequency counts of attributes for discovering fuzzy association rules in
relational databases. Instead of dividing quantitative attributes into fixed in-
tervals, they employ linguistic terms to represent the revealed regularities and
exceptions. Here no user-supplied thresholds are required, and quantitative
values can be directly inferred from the rules. The linguistic representation
leads to the discovery of natural and more understandable rules. The algo-
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rithm allows one to discover both positive and negative rules, and can deal with
fuzzy class boundaries as well as missing values in databases. The use of fuzzy
techniques buries the boundaries of adjacent intervals of numeric quantities,
resulting in resilience to noises such as inaccuracies in physical measurements
of real life entities. The effectiveness of the algorithm was demonstrated on a
transactional database of a PBX system and a database concerning industrial
enterprises in mainland China.
We describe fuzzy association rules in greater detail in Section 7.10.

2.3.4 Functional dependencies

Fuzzy logic has been used for analyzing inference based on functional de-
pendencies (FDs), between variables, in database relations. Fuzzy inference
generalizes both imprecise (set-valued) and precise inference. Similarly, fuzzy
relational databases generalize their classical and imprecise counterparts by
supporting fuzzy information storage and retrieval [74]. FDs are interesting
from knowledge discovery standpoint since they allow one to express, in a
condensed form, some properties of the real world which are valid on a given
database. These properties can then be used in various applications such as
reverse engineering or query optimization. Bosc et al. [75] use a data mining
algorithm to extract or discover extended FDs, represented by gradual rules
composed of linguistic variables.

2.3.5 Data summarization

Summary discovery is one of the major components of knowledge discovery
in databases. This provides the user with comprehensive information for
grasping the essence from a large amount of information in a database. Fuzzy
set theory is also used for data summarization [76]. Typically, fuzzy sets are
used for an interactive top-down summary discovery process which utilizes
fuzzy IS-A hierarchies as domain knowledge.

Linguistic summaries of large sets of data are derived as linguistically quan-
tified propositions with a degree of validity [77]. This corresponds to the
preference criterion involved in the mining task. The system consists of a
summarizer (like young), a quantity in agreement (like most), and the truth
or validity (say, 0.7).

It is found that often the most interesting linguistic summaries are non-
trivial and human-consistent concepts, involving complicated combinations
of attributes. In practice, this cannot be generated automatically and hu-
man assistance or interaction is required. Kacprzyk and Zadrozny [78] have
developed FQUERY for an interactive linguistic summarization, using natu-
ral terms and comprehensible quantifiers. It supports various fuzzy elements
in queries, including interval attributes with membership for matching in a
fuzzy relation and importance coefficients. First the user has to formulate a
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set of linguistic summaries of interest. The system then retrieves records from
the database and calculates the validity of each summary. Finally, the most
appropriate linguistic summary is selected. The scheme has also been used
for fuzzy querying over the Internet, using browsers like Microsoft Explorer
or Netscape Navigator. The definition of fuzzy values, fuzzy relations, and
linguistic quantifiers is via Java applets.

Chiang et al. [79] have used fuzzy linguistic summary for mining time series
data. The system provides human interaction, in the form of a graphic display
tool, to help users premine a database and determine what knowledge could
be discovered. The model is used to predict the on-line utilization ranks of
different resources, including CPU and real storage.

2.3.6 Image mining

Recent increase in the size of multimedia information repositories, consisting
of mixed media data, has made content-based image retrieval (CBIR) an
active research area. Unlike traditional database techniques which retrieve
images based on exact matching of keywords, CBIR systems represent the
information content of an image by visual features such as color, texture, and
shape, and they retrieve images based on similarity of features. Frigui [80] has
developed an interactive and iterative image retrieval system that takes into
account the subjectivity of human perception of visual content. The feature
relevance weights are learned from the user’s positive and negative feedback,
and the Choquet integral is used as a dissimilarity measure. The smooth
transition in the user’s feedback is modeled by continuous fuzzy membership
functions. Medasani and Krishnapuram [81] have designed a fuzzy approach
to handle complex linguistic queries consisting of multiple attributes. Such
queries are usually more netural, user-friendly, and interpretable for image
retrieval. The degree to which an image satisfies an attribute is given by the
membership value of the feature vector, corresponding to the image, in the
membership function for the attribute. Fuzzy connectives are used to combine
the degrees of satisfaction of multiple attributes in a complex query, to arrive
at an overall degree of satisfaction while ranking images for retrieval.

Video as the format of computer-related material is becoming more and
more common these days, and many Web pages involve small pieces of movies
or video-clips or animation. Fuzzy time related queries are used in Ref. [82]
to retrieve information inside a video. The queries are handled using Zadeh'’s
principle of computing with words, which allows a human-friendly interface.
The system is implemented on a Java Search Engine.

Querying for a target image and retrieving it from Web and image databases,
based on image similarity, is presented in Ref. [83]. A fuzzy c-means algorithm
is used to cluster intrinsic image characteristics extracted from subregions of
the image. A measure of similarity between pairs of images is determined in
terms of the rotation-invariant attributes like color, texture, and shape. Color
is defined {84] in terms of the hue, saturation, and value representation of the
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average color of the pixel in the region. Texture is represented in terms of
the co-occurrence matrices in four directions involving Haralick’s parameters
[85]. For each database image, the system calculates its attribute matrix and
does a whitening transformation before fuzzy clustering to store the represen-
tative centroids. When a target image is supplied, the system adopts a similar
procedure in order to retrieve the most similar image (in terms of the stored
centroid) from the database in response to a query.

In this section we have briefly summarized some research on soft computing-
based image mining. The traditional image mining techniques, based on
context-based image retrieval systems, have been covered in Section 9.3.

2.4 ROLE OF NEURAL NETWORKS IN DATA MINING

Neural networks were earlier thought to be unsuitable for data mining be-
cause of their inherent black-bor nature. No information was available from
them in symbolic form, suitable for verification or interpretation by humans.
However, recent investigations have concentrated on extracting the embed-
ded knowledge in trained networks in the form of symbolic rules [25]. Unlike
fuzzy sets, the main contribution of neural nets towards data mining stems
from rule extraction and clustering [3].

2.4.1 Rule extraction

In general, the primary input to a connectionist rule extraction algorithm is
a representation of a trained (layered) neural network, in terms of its nodes,
links, and sometimes the dataset. One or more hidden and output units are
used to automatically derive the rules, which may later be combined and
simplified to arrive at a more comprehensible rule set. These rules can also
provide new insights into the application domain. The use of neural nets helps
in (i} incorporating parallelism and (ii) tackling optimization problems in the
data domain. The models are usually suitable in data-rich environments.

Typically, a network is first trained to achieve the required accuracy rate.
Redundant connections of the network are then removed using a pruning
algorithm. The link weights and activation values of the hidden units in the
network are analyzed, and classification rules are generated [25, 86]. Further
details on rule generation can be obtained in Section 8.2.

2.4.2 Rule evaluation

Here we provide some quantitative measures to evaluate the performance of
the generated rules [87]. This relates to the goodness of fit chosen for the
rules. Let the (¢, j)th element of an I x ! matrix, n;;, indicate the number of
objects (patterns) actually belonging to class i, but classified as class ;.
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Accuracy: It is the correct classification percentage, provided by the
rules on a test set defined as

Dic 4 100,

(]

where n; is equal to the number of objects in class ¢ such that n;. of
these are correctly classified.

User’s accuracy: It gives a measure of the confidence that a classifier
attributes to a region as belonging to a class. If n] objects are found to
be classified into class ¢, then the user’s accuracy (U) is defined as

U = 2 100
n!

1

In other words, it denotes the level of purity associated with a region.

Kappa: The coefficient of agreement, kappa, measures the relationship
of beyond chance agreement to expected disagreement. It uses all the
cells in the confusion matrix, not just the diagonal elements. The kappa
value for class ¢ (K;) is defined as

N.n,-c —ni.n;
Ki = N7 7

i

Nl ~n;n (234)

where N indicates the total number of data samples. The estimate of
kappa is the proportion of agreement, after chance agreement is removed
from consideration. The numerator and denominator of overall kappa
are obtained by summing the respective numerators and denominators
of K; separately over all classes.

Fidelity: 1t is measured as the percentage of the test set for which
network and the rulebase output agree [87].

Confusion: This measure quantifies the goal that the “confusion should
be restricted within minimum number of classes.” Let 7;; be the mean
of all n;; for i # j. Then [87]

Card{ni; : ni; > Rj,i # j}
{

Conf = (2.35)
for an ! class problem. The lower the value of confusion, the smaller the
number of classes between which confusion occurs.

Coverage: The percentage of examples from a test set for which no rules
are fired is used as a measure of the uncovered region. A rulebase having
a smaller uncovered region is superior.
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e Rulebase size: This is measured in terms of the number of rules. The
lower its value, the more compact the rulebase. This leads to better
understandability.

e Computational complerxity. This is measured in terms of the CPU time
required.

e Confidence: The confidence of the rules is defined by a confidence factor
cf. We use [87]

(Bswji — 05)

inf , (2.36)
j: all nodes in the path Eiwﬁ

cfi =

where wj; is the ith incoming link weight to node j and §; is its threshold.

2.4.3 - Clustering and self-organization

One of the big challenges to data mining is the organization and retrieval of
documents from archives. Kohonen et al. [88] have demonstrated the utility
of a huge self-organizing map (SOM) with more than one million nodes to
partition a little less than seven million patent abstracts, where the documents
are represented by 500-dimensional feature vectors. Very large text collections
have been automatically organized into document maps that are suitable for
visualization and intuitive exploration of the information space. Vesanto et al.
[89] employ a stepwise strategy by partitioning the data with a SOM, followed
by its clustering. Alahakoon et al. [90] perform hierarchical clustering of
SOMs, based on a spread factor which is independent of the dimensionality
of the data. Further details of these algorithms are provided in Section 6.5.2.

Shalvi and De Claris [91] have designed a data mining technique, combining
Kohonen'’s self-organizing neural network with data visualization, for cluster-
ing a set of pathological data containing information regarding the patients’
drugs, topographies (body locations) and morphologies (physiological abnor-
malities). Koenig [92] has combined SOM and Sammon’s nonlinear mapping
for reducing the dimension of data representation for visualization purposes.

2.4.4 Regression

Neural networks have also been used for a variety of classification and regres-
sion tasks [93]. Time series prediction has been attempted by Lee and Liu [94].
They have employed a neural oscillatory elastic graph matching model, with
hybrid radial basis functions, for tropical cyclone identification and tracking.

2.4.5 Information retrieval

The SOM has been used for information retrieval [95]. A map of text docu-
ments arranged using the SOM is organized in a meaningful manner, so that
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items with similar content appear at nearby locations of the two-dimensional
map display, such that the data is clustered. This results in an approximate
model of the data distribution in the high-dimensional document space. A
document map is automatically organized for browsing and visualization, and
it is successfully utilized in speeding up document retrieval while maintaining
high perceived quality. The objective of the search is to locate a small number
N’ of best documents in the order of goodness corresponding to a query. The
strategy is outlined below.

o Indexing phase: Apply the SOM to partition a document collection of
D documents into K subsets or clusters, representing each subset by its
centroid.

o Search phase: For a given query,

— Pre-select: select the best subsets, based on comparison with the
centroids, and collect the documents in these subsets until K’ doc-
uments (K’ > N’) are obtained.

— Refine: perform an exhaustive search among the K’ prospective
documents and return the N’ best ones in the order of goodness.

A collection of 1460 document vectors was organized on a 10 x 15 SOM, using
the WEBSOM principles, so that each map unit could contain an average of
10 documents.

2.5 ROLE OF GENETIC ALGORITHMS IN DATA MINING

GAs are adaptive, robust, efficient and global search methods, suitable in
situations where the search space is large. They optimize a fitness function,
corresponding to the preference criterion of data mining, to arrive at an op-
timal solution using certain genetic operators. Knowledge discovery systems
have been developed using genetic programming concepts [96, 97). The MAS-
SON system [98], where intentional information is extracted for a given set of
objects, is popular. The problem addressed is to find common characteristics
of a set of objects in an object-oriented database. Genetic programming is
used to automatically generate, evaluate, and select object-oriented queries.
GAs are also used for several other purposes like fusion of multiple datatypes
in multimedia databases, as well as automated program generation for mining
multimedia data [99].

However, the literature in the domain of GA-based data mining is not as
rich as that of fuzzy sets. We provide below a categorization of few such
interesting systems based on the functions modeled [3].
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2.5.1 Regression

Besides discovering human-interpretable patterns, data mining also encom-
passes prediction [58], where some variables or attributes in the database are
used to determine unknown or future values of other variables of interest. The
traditional weighted average or linear multiregression models for prediction re-
quire a basic assumption that there is no interaction among the attributes.
GAs, on the other hand, are able to handle attribute interaction in a better
manner. Xu et al. [100] have designed a multi-input single-output system
using a nonlinear integral. An adaptive GA is used for learning the nonlinear
multiregression from a set of training data.

Noda et al. [101] use GAs to discover interesting rules in a dependence mod-
eling task, where different rules can predict different goal attributes. Gener-
ally, attributes with high information gain are good predictors of a class when
considered individually. However attributes with low information gain could
become more relevant when attribute interactions are taken into account.
This phenomenon is associated with rule interestingness. The degree of in-
terestingness of the consequent is computed based on the relative frequency
of the value being predicted by it. In other words, the rarer the value of a
goal attribute, the more interesting a rule it predicts. The authors attempt
to discover (or mine) a few interesting rules (knowledge nuggets) instead of
a large set of accurate {(but not necessarily interesting) rules. The concept of
interestingness has been represented using Eq. (2.33). It is also discussed in
Section 7.4, with reference to association rule mining.

2.5.2 Association rules

Multiobjective GAs deal with finding the optimal solutions to problems having
multiple objective functions or constraints. The solution to this is a Pareto
optimal set of solutions, such that there exists no solution in the search space
which dominates any member of this set. These are used for rule mining, which
often involves a large search space with huge number of attributes and records.
A global search is performed with multiple objectives, involving a combination
of factors like predictive accuracy, comprehensibility, and interestingness.

Rules are typically encoded in two ways, namely, the Michigan approach
(each individual encoding a single rule) and the Pittsburgh approach (each
individual encoding a set of rules). The antecedent and consequent parts
are encoded separately. To avoid generation of invalid chromosomes during
crossover, some alignment is necessary in the position of the different at-
tribute values. While a categorical attribute is represented by its value, a
continuous-valued attribute is encoded by its binary representation. Selec-
tion and mutation operators are the same as in standard GAs. Although
conventional crossover may be used, one can also resort to generalized or spe-
cialized crossover operators that involve logical OR/AND operations over the
appropriate segment of the parent chromosomes.
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Lopes et al. {102] evolve association rules of IF ¢ THEN P type, which provide
a high degree of accuracy and coverage. While the accuracy of a rule mea-
sures its degree of confidence, its coverage is interpreted as the comprehensive
inclusion of all the records that satisfy the rule. Hence

|IC P|
Accuracy = ————————— 2.37
CAPI+ICND] (237)
and ﬂ
|CN P
Coverage = — 2.38
CAPI+CAP (238)

are defined. Note that other quantitative measures for rule evaluation have
been discussed in Section 2.4.2, with reference to neural networks.

2.6 ROLE OF ROUGH SETS IN DATA MINING

The theory of rough sets [55] has proved to be useful in a variety of KDD
processes. It offers mathematical tools to discover hidden patterns in data;
therefore its importance, as far as data mining is concerned, can in no way be
overlooked [3]. A fundamental principle of a rough set-based learning system
is to discover redundancies and dependencies between the given features of
a problem to be classified. It approximates a given concept from below and
from above, using lower and upper approrimations.

A rough set learning algorithm can be used to obtain a set of rules in
IF-THEN form from a decision table. Every decision rule has two conditional
probabilities associated with it, namely, certainty and coverage factors. These
are closely related to the fundamental concepts of lower and upper approxi-
mations [103]. The rough set method provides an effective tool for extracting
knowledge from databases. Here one first creates a knowledge base, classifying
objects and attributes within the created decision tables. Then a knowledge
discovery process is initiated to remove some undesirable attributes. Finally
the data dependency is analyzed, in the reduced database, to find the minimal
subset of attributes called reduct.

Rough set applications to data mining generally proceed along the following
directions.

1. Decision rule induction from attribute value table [104]-[106]. Most of
these methods are based on generation of discernibility matrices and
reducts.

2. Data filtration by template generation [107]. This mainly involves ex-
tracting elementary blocks from data based on equivalence relation. Ge-
netic algorithms are also sometimes used in this stage for searching, so
that the methodologies can be used for large datasets.
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Besides these, reduction of memory and computational requirements for rule
generation, and working on dynamic databases [106] are also considered.

Some of the rough set-based systems developed for data mining include
(i) the KDD-R system based on the VPRS (Variable Precision Rough Set)
model [108] and (ii) the rule induction system based on LERS (Learning from
Examples based on Rough Set Theory) [109]. LERS has been extended in
Ref. [110] to handle missing attributes using the closest fit.

Document clustering has been recognized as a means for improving the
efficiency and effectiveness of information retrieval and text mining. A non-
hierarchical document clustering algorithm [111], based on a tolerance rough
set model, has been applied to large document databases characterized by a
few index terms or keywords. Unlike hierarchical algorithms, requiring time
and space complexities of O(N3) and O(N?) respectively (with N being the
total number of terms in a textual database), this approach requires complex-
ities of O(N log N) and O(N). The concept of upper approximation in rough
sets makes it possible to exploit the semantic relationship between a few index
terms in a large text document.

2.7 ROLE OF WAVELETS IN DATA MINING

Role of wavelets in different aspects of data mining is gaining significant impor-
tance. Today it has become a very powerful signal processing tool in different
application areas such as image processing, compression, image indexing and
retrieval, digital libraries, image clustering, and databases [112]-{116].
Spatial data mining aims to handle the huge amounts of spatial data ob-
tained from satellite images, medical equipments, Geographic Information
Systems (GIS), image database exploration, etc. The objective is to auto-
mate the process of understanding spatial data by concise representation and
reorganization, to accommodate data semantics. Clustering is often required
at hierarchical levels of coarseness, grouping the spatial objects at different
levels of accuracy. This gives rise to the concept of multiresolution represen-
tation of an image. Wavelets [5] are found to be very useful in appropriately
modeling such situations because of the nonstationary property of the image
signals formed around the edges and correlation amongst the image pixels.
Wavelet transform is a signal processing technique that decomposes a signal
or image into different frequency subbands at number of levels and multiple
resolutions. In every level of decomposition, the high-frequency subband cap-
tures the discontinuities in the signals — for example, the edge information in
an image. The low-frequency subband is nothing but a subsampled version of
the original image, with similar statistical and spatial properties as the origi-
nal signal. As a result, the low-frequency subband can be further decomposed
into higher levels of resolution, and it helps in representing spatial objects in
different coarser levels of accuracy in multiresolution subbands. This property
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led to the application of wavelet transforms in edge detection, object isolation,
object detection, medical image fusion, and others [117].

One has to apply the wavelet transform on the feature space to find dense
regions or clusters. Wavelet transform is not a single uniquely defined mathe-
matical function like the Discrete Cosine Transform. There are many wavelet
basis functions available in the literature. The wavelet transform is usually
represented as a pair of Finite Impulse Response (FIR) filters, namely, the
high-pass filter and the low-pass filter. A one-dimensional signal s can be
filtered by convolving the filter coefficients ¢ of such a filter with the signal
values

M M
§,‘ = z CkSitk — —2—, (2.39)
k=1

as an example, where M is the number of coefficients in the filter and 3 is the
result of the convolution. The Cohen-Daubechies—Feauveau (2,2) biorthogonal
wavelet is one of the most commonly used wavelet transform in data clustering
applications. It is a hat-shaped filter that emphasizes regions where points
cluster, while suppressing the weaker information along their boundary. This
makes it easier to find the connected components in the transformed space.

Wavelets have been used for efficiently clustering large datasets [116]. This
is discussed in Section 6.5.3. We provide further details on wavelet transfor-
mation and its application to image compression in Section 3.8.3.

2.8 ROLE OF HYBRIDIZATIONS IN DATA MINING

Let us first consider neuro-fuzzy hybridization in the context of data mining
[3]. The rule generation aspect of neural networks is utilized to extract more
natural rules from fuzzy neural networks [118], incorporating the better in-
terpretability and understandability of fuzzy sets. The fuzzy MLP [119] and
fuzzy Kohonen network [120] have been used for linguistic rule generation and
inferencing. Here the input, besides being in quantitative, linguistic, or set
forms, or a combination of these, can also be incomplete. Qutput decision is
provided in terms of class membership values. The models are capable of

e Inferencing based on complete and/or partial information

¢ Querying the user for unknown input variables that are key to reaching
a decision

¢ Producing justification for inferences in the form of 1F-THEN rules.

The connection weights and node activation values of the trained network are
used in the process. A certainty factor determines the confidence in an output
decision. Figure 2.8 gives an overall view of the various stages involved in the
process of inferencing and rule generation.
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Zhang et al. [121] have designed a granular neural network to deal with
numerical-linguistic data fusion and granular knowledge discovery in databases.
The network is capable of learning internal granular relations between input
and output and predicting new relations. Low-level granular data can be
compressed to generate high-level granular knowledge in the form of rules.

A neuro-fuzzy knowledge-based network by Mitra et al. [122] is capable
of generating both positive and negative rules in linguistic form to justify
any decision reached. In the absence of positive information regarding the
belonging of a pattern to class Cy, the complementary information is used for
generating negative rules. The network topology is automatically determined,
in terms of the a priors class information and distribution of pattern points
in the feature space, followed by refinement using growing and/or pruning of
links and nodes.

Banerjee et al. [28] have used a rough-neuro-fuzzy integration to design a
knowledge-based system, where the theory of rough sets is utilized for extract-
ing domain knowledge. The extracted crude domain knowledge is encoded
among the connection weights. Rules are generated from a decision table
by computing relative reducts. The network topology is automatically deter-
mined and the dependency factors of these rules are encoded as the initial
connection weights. The hidden nodes model the conjuncts in the antecedent
part of a rule, while the output nodes model the disjuncts.

A promising direction in mining a huge dataset is to (a) partition it, (b)
develop classifiers for each module, and (c) combine the results. A modular
approach has been pursued [87, 123, 124] to combine the knowledge-based
rough—fuzzy MLP subnetworks or modules generated for each class, using
GAs. An [-class classification problem is split into ! two-class problems. Fig-
ure 2.9 depicts the knowledge flow for the entire process for [ = 2. Dependency
rules, shown on the top left corner of the figure, are extracted directly from
real-valued attribute table consisting of fuzzy membership values by adap-
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tively applying a threshold. The nature of the decision boundaries, at each
stage, are depicted on the right side of the figure. The topology of the sub-
networks are initially mapped using the dependency rules. Evolution using
GA leads to partial refinement. The final network (represented as a concate-
nation of the subnetworks) is evolved using a GA with restricted mutation
operator, in a novel rough-neuro-fuzzy—genetic framework. The divide-and-
conquer strategy, followed by evolutionary optimization, is found to enhance
the performance of the network. The method is described in further detail in
Section 8.3.

George and Srikanth [125] have used a fuzzy-genetic integration, where
GAs are applied to determine the most appropriate data summary. Kiem and
Phuc [126] have developed a rough-neuro—genetic hybridization for discovering
conceptual clusters from a large database.

2.9 CONCLUSIONS AND DISCUSSION

Current research in data mining mainly focuses on the discovery algorithm
and visualization techniques. There is a growing awareness that, in practice,
it is easy to discover a huge number of patterns in a database where most of
these patterns are actually obvious, redundant, and useless or uninteresting
to the user. To prevent the user from being overwhelmed by a large number
of uninteresting patterns, techniques are needed to identify only the useful or
interesting patterns and present them to the user.

Soft computing methodologies, involving fuzzy sets, neural networks, ge-
netic algorithms, rough sets, wavelets, and their hybridizations, have recently
been used to solve data mining problems. They strive to provide approximate
solutions at low cost, thereby speeding up the process. A categorization has
been provided based on the different soft computing tools and their hybridiza-
tions used, the mining function implemented, and the preference criterion
selected by the model.

Fuzzy sets, which constitute the oldest component of soft computing, are
suitable for handling the issues related to understandability of patterns, in-
complete or noisy data, mixed media information, and human interaction and
can provide approximate solutions faster. They have been mainly used in
clustering, discovering association rules and functional dependencies, summa-
rization, time series analysis, Web applications, and image retrieval.

Neural networks are suitable in data-rich environments and are typically
used for extracting embedded knowledge in the form of rules, quantitative
evaluation of these rules, clustering or self-organization, classification, regres-
sion, Web mining, and information retrieval. They have an advantage over
other types of machine learning algorithms for scaling [127].

Genetic algorithms provide efficient search algorithms to select a model,
from mixed media data, based on some preference criterion or objective func-
tion. They have been employed in regression, discovering association rules
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and Web mining. Rough sets are suitable for handling different types of un-
certainty in data, and they have been mainly utilized for extracting knowledge
in the form of rules.

Hybridizations typically enjoy the generic and application-specific merits
of the individual soft computing tools that they integrate. Data mining func-
tions modeled by such systems include rule extraction, data summarization,
clustering, incorporation of domain knowledge, and partitioning. It is to be
noted that the notion of partitioning {i.e., the modular approach) provides an
effective direction for scaling up algorithms and speeding up convergence.

An efficient integration of soft computing tools, according to Zadeh’s Com-
putational Theory of Perceptions [128], is needed. Feature evaluation and
dimensionality reduction help improve prediction accuracy. Some recent work
in this direction are available in Refs. [129]-[131]. Other issues, requiring at-
tention, include (a) the choice of metrics and evaluation techniques to handle
dynamic changes in data and (b) a quantitative evaluation of system perfor-
mance.

Recently, several commercial data mining tools have been developed based
on soft computing methodologies. These include

e Data Mining Suite, using fuzzy logic;

e Braincell, Cognos 4Thought and IBM Intelligent Miner for Data, using
neural networks; and

e Nuggets, using GAs.
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Multimedia Data
Compression

3.1 INTRODUCTION

Multimedia data mining is a growing area of interest, and its advancement
will have impact on how we store, access, and process different datatypes
for different application areas in the near future. Data mining usually deals
with large datasets and involves the access of relevant information from them.
Hence it becomes necessary to apply data compression in large datasets, in
order to reduce storage requirements for practical data processing applica-
tions, particularly in the area of multimedia applications. The development
of efficient compression techniques will continue to be a design challenge and
an area of interest to researchers.

Although the basic premises of data compression offer promises to poten-
tially improve the efficiency of data mining techniques, not much attention
has been focused in this direction by researchers. In our view, data compres-
sion has been neglected by the data mining community. However, limited
efforts have been made to reduce high-dimensional data to lower dimensions
for its compact representation and better visualization. Classical data mining
techniques deal with mining information from databases represented in the
canonical form. Access of data in the compressed domain and development of
data compression techniques particularly suitable for data mining, whereby it
would be possible to efficiently index the compressed data for fast search and
access from large databases, remains a challenge. This will immensely benefit
Web mining as well since huge volumes of data are distributed worldwide, all
over the Web, in compressed form.

89



90 MULTIMEDIA DATA COMPRESSION

In order to address the challenging problem of mining data in the com-
pressed domain, it becomes essential to understand the principles behind cur-
rent data compression techniques. Researchers can build on this knowledge
to propose new data mining techniques in the compressed domain, thereby
influencing future multimedia applications through mining.

The main advantage of compression is that it reduces the data storage
requirements. It also offers an attractive approach to reduce the communica-
tion cost in transmitting high volumes of data over long-haul links via higher
effective utilization of the available bandwidth in the data links. This sig-
nificantly aids in reducing the cost of communication, due to the data rate
reduction. Thereby, data compression also increases the quality of multime-
dia presentation through limited bandwidth communication channels. As a
result, the audience can experience rich quality signals for audio-visual data
representation.

For example, because of the application of sophisticated compression tech-
nologies applied in multimedia data, we can receive toll quality audio at the
other side of the globe through the good old telecommunication channels at
a much better price as compared to that of a decade ago. Because of the sig-
nificant progress in image compression techniques, a single 6-MHz broadcast
television channel can carry HDTV signals to provide better-quality audio
and video at higher rates and enhanced resolution, without additional band-
width requirements. Due to the reduced data rate offered by the compression
techniques, the computer network and Internet usage is becoming more and
more image and graphics friendly, rather than being just data and text cen-
tric phenomena. In short, high-performance compression has created new
opportunities of creative applications such as digital library, digital archival,
video teleconferencing, telemedicine, digital entertainment, to name a few.
Researchers need to pay significant attention to develop techniques for min-
ing of multimedia data in the compressed domains, in order to further excel
in the usage of data mining technologies in multimedia applications.

The organization of this chapter is as follows. Section 3.2 introduces the
basic concepts from information theory. Sections 3.3-3.5 provide details on
the classification of compression algorithms, a data compression model, and
the different measures of compression performance. Section 3.6 presents some
source coding algorithms. This is followed by a treatise on Principal Com-
ponent Analysis in Section 3.7. Principles of still image compression are de-
scribed in Section 3.8. The JPEG image compression standard, JPEG loss-
less coding algorithm, and baseline JPEG compression are explained in Sec-
tions 3.9-3.11. Text compression is elaborated upon in Section 3.12. Finally,
Section 3.13 concludes the chapter.
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3.2 INFORMATION THEORY CONCEPTS

The Mathematical Theory of Communication [1]-[4], also called the Informa-
tion Theory, was pioneered by Claude E. Shannon in 1948. It is considered
to be the theoretical foundation of data compression research.

Representation of data is a combination of information and redundancy
[1]. Information is the portion of data that must be preserved permanently
in its original form in order to correctly interpret the meaning or purpose of
the data. Redundancy, on the other hand, is that portion of data that can be
removed when it is not needed or can be reinserted to interpret the data when
needed. Data compression is essentially a redundancy reduction technique.
The redundancy in data representation is reduced in such a way that it can
be subsequently reinserted to recover the original data, through a process
called decompression of this data. In literature, sometimes data compression
is referred to as coding, while decompression is termed as decoding.

Usually development of a data compression scheme can be broadly divided
into two phases, namely, modeling and coding. In the modeling phase, infor-
mation about redundancy that exists in the data is extracted and described
in a model. This enables us to determine how the actual data differs from
the model, and it allows us to encode the difference in the coding phase. Ob-
viously, a data compression algorithm becomes more effective if the model
is closer to the characteristics of the data generating process which we often
call the source. The model can be obtained by empirical observation of the
statistics of the data generated by the source. In an empirical sense, any
information-generating process can be described as a source that emits a se-
quence of symbols chosen from a finite set of all possible symbols generated by
the source. This finite set of symbols is often called an alphabet. For example,
we can think of this text as being generated by a source with an alphabet
containing all the ASCII characters.

3.2.1 Discrete memoryless model and entropy

If the symbols produced by the information source are statistically indepen-
dent to each other, the source is called a discrete memoryless source. This
is described by its source alphabet A = {ai,as,...,an} and the associ-
ated probabilities of occurrence P = {p(a,), p(a2),...,p(an)} of the symbols
ai,asz,...,ay in A.

The definition of discrete memoryless source model provides us a very pow-
erful concept of quantification of average information content per symbol of
the source and entropy of the data. The concept of “entropy” was first used by
physicists as a thermodynamic parameter to measure the degree of “disorder”
or “chaos” in a thermodynamic or molecular system. In statistical sense, we
can view this as a measure of the degree of “surprise” or “uncertainty.” In an
intuitive sense, it is reasonable to assume that the appearance of a less prob-
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able event (symbol) gives us more surprise and hence we expect that it might
carry more information. On the contrary, the more probable event (symbol)
will carry less information because it was expected more. Note an analogy to
the concept of surprising or interesting rules explained in Section 7.4.

With the above intuitive explanation, we can comprehend Shannon’s defini-
tion of the relation between the source symbol probabilities and corresponding
codes. The amount of information content, I(a;), in a source symbol a;, in
terms of its associated probability of occurrence p(a;) is

1
I{a;) =log, —— = —lo a;).
( ) g2p(ai) g2p( )

The base 2 in the logarithm indicates that the information is expressed in
binary units or bits. In terms of binary representation of the codes, a symbol
a; that is expected to occur with probability p(a;) is best represented in
approximately —log, p{a;) bits. As a result, a symbol with higher probability
of occurrence in a message is coded using a fewer number of bits.

If we average the amount of information content over all the possible sym-
bols of the discrete memoryless source, we can find the average amount of
information content per source symbol from the discrete memoryless source.
This is expressed as

N N
E =Y ple)I(e) = =3 plas)logsp(a), (31)

and is popularly known as “entropy” in information theory. Hence entropy
is the expected length of a binary code over all possible symbols in a dis-
crete memoryless source. Note the analogy of this definition with Eq. (5.1),
expressing entropy in the context of pattern classification.

The concept of entropy is very powerful. In “stationary” systems, where
the probabilities of occurrence of the source symbols are fixed, it provides a
bound for the compression that can be achieved. This is a very convenient
measure of the performance of a coding system.

3.2.2 Noiseless Source Coding Theorem

The Noiseless Source Coding Theorem by Shannon [1] establishes the mini-
mum average code word length per source symbol that can be achieved, which
in turn provides an upper bound on the achievable compression losslessly. The
Noiseless Source Coding Theorem is also known as Shannon’s first theorem.
This is one of the major source coding results in information theory [1]-{3].
If the data generated from a discrete memoryless source A is considered to
be grouped together in blocks of n symbols, to form an n-extended source, then
the new source A™ has N" possible symbols {a;}, with probability P(a;) =
P(a;,)P(a;,)- - P(a;,),t = 1,2,..-, N™. By deriving the entropy of the new
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n-extended source, it can be proven that
E(A™) =nE(A),

where E(A) is the entropy of the original source A. Let us now consider
encoding the blocks of n source symbols, at a time, into binary codewords.
For any € > 0, it is possible to construct a codeword for the block in such a
way that the average number of bits per original source symbol, L, satisfies

E(A) < L< E(A)+e. (3.2)

The left-hand inequality must be satisfied for any uniquely decodable code for
the block of n source symbols.

The Noiseless Source Coding Theorem states that any infinitely long se-
quence of source symbols emanating from a discrete memoryless source can
be losslessly encoded with a code whose average number of bits per source
symbol is arbitrarily close to, but not less than, the source entropy F in bits.
Hence this theorem provides us the intuitive (statistical) yardstick to measure
the information emerging from a source.

3221 Example 1: Let us consider a discrete memoryless source with
alphabet A; = {, 8,7, 6} having associated probabilities p(c) = 0.65, p(3) =
0.20, p(vy) = 0.10, and p(d8) = 0.05, respectively. The entropy of this source is
E = —(0.651og, 0.65 + 0.20 log, 0.20 + 0.10 log, 0.10 + 0.05 log, 0.05), which is
approximately 1.42 bits/symbol. As a result, a 2000-symbols-long datum can
be represented using approximately 2820 bits.

Knowing something about the structure of the data sequence often helps
in reducing the entropy estimation of the source. Let us consider that the
numeric data sequence generated by a source of alphabet A2 = {0,1,2,3} is
D=01123333333332223333, asan example. The probability
of appearance of the symbols in alphabet A; are p(0) = 0.05, p(1) = 0.10,
p(2) = 0.20, and p(3) = 0.65, respectively, as in alphabet A;. Hence the
estimated entropy of the sequence D is E = 1.42 bits per symbol. If we
assume that correlation exists between two consecutive samples in this data
sequence, we can reduce this correlation by simply subtracting a sample by its
previous sample to generate the residual values r; = s; — s;_; for each sample
s;. Based on this assumption of the model, the sequence of residuals of the
original data sequenceis D=0101100000000-1001 00 0, consisting
of three symbols in a modified alphabet A; = {—1,1,0}. The probability of
occurrence of the symbols in the new alphabet A are p(—1) = 0.05, p(1) = 0.2,
and p(0) = 0.75, respectively, as computed by the number of occurrences in
the residual sequence. The estimated entropy of the transformed sequence
is E = —(0.05log, 0.05 + 0.2log, 0.2 + 0.75log, 0.75) = 0.992, that is, 0.992
bits/symbol. Hence the data sequence can be represented with fewer number
of bits, resulting in compression.
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3.3 CLASSIFICATION OF COMPRESSION ALGORITHMS

In an abstract sense, we can describe data compression as a method that takes
an input data D and generates a shorter representation of the data c¢(D) with
fewer number of bits compared to that of D. The reverse process is called
decompression, and it takes the compressed data ¢(D) and generates or recon-
structs the data D’ as shown in Fig. 3.1. Sometimes the compression (coding)
and decompression (decoding) systems together are called a “CODEC,” as
marked by the broken box in Fig. 3.1. The reconstructed data D’ could be
identical to the original data D or it could be an approximation of the original
data D, depending upon the reconstruction requirements. If the reconstructed
data D’ is an exact replica of the original data D, we call the algorithm ap-
plied to compress D and decompress ¢(D) to be lossless. Otherwise, we call
the algorithms to be lossy. Hence as far as the reversibility of the original
data is concerned, the data compression algorithms can be broadly classified
into two categories, namely, “lossless” and “lossy.”

I EReconstructed
Input Data; Compressio Compressed Data . [Decompression| ; Data

F—>
System c(D) System D’

Fig. 3.1 Block diagram of CODEC.

Usually we need to apply lossless data compression techniques on text data
or scientific data. For example, we cannot afford to compress the electronic
copy of this textbook using a lossy compression technique. It is expected
that we should be able to reconstruct the same text after the decompression
process. A small error in the reconstructed text can have a completely different
meaning. We do not expect the sentence “You should not delete this file” in
a text to change to “You should now delete this file” as a result of some error
introduced by a lossy compression or decompression algorithm. Similarly, if
we compress a huge ASCII file containing a program written in “C” language,
for example, we expect to get back the same “C” code after decompression
because of obvious reasons.

The lossy compression techniques are usually applicable to data where high
fidelity of reconstructed data is not required, for perception, by the human
perceptual system. Examples of such types of data are image, video, graph-
ics, speech, audio, etc. Some image compression applications may, however,
require the compression scheme to be lossless; that is, each pixel of the de-
compressed image should be exactly identical to the original one. Medical
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imaging is an example of such an application, where compressing the digital
radiographs with a lossy scheme could be a disaster if it has to compromise
with the diagnostic accuracy. Similar observations are true for astronomical
images of galaxies and stars.

3.4 A DATA COMPRESSION MODEL

A model of a typical data compression system can be described using the block
diagram shown in Fig. 3.2. A data compression system mainly constitutes
three major steps, namely, (i) removal or reduction in data redundancy, (ii)
reduction in entropy, and (iii) entropy encoding.

Input Data

|

Reduction of Data
Redundancy

Reduction of Entropy

Entropy Encoding

Compressed Data

Fig. 3.2 A data compression model.

The redundancy in data may appear in different forms. For example, the
neighboring pixels in a typical image are very much spatially correlated to
each other. By correlation we mean that the pixel values are very similar
in the non-edge smooth regions of the image [5, 6]. This correlation of the
neighboring pixels is termed as spatial correlation. In case of moving pictures,
the consecutive frames could be almost similar, with or without minor dis-
placement, if the motion is slow. The composition of words or sentences in a
natural text follows some context model, based on the grammar being used.
Similarly, the records in a typical numeric database may have some sort of
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relationship amongst the atomic entities which comprise each record in the
database. There are rhythms and pauses in regular intervals in any natural
audio or speech data. All these redundancies in data representation can be
reduced in order to achieve potential compression.

Removal or reduction in data redundancy is typically achieved by trans-
forming the original data from one form of representation to another, in order
to decorrelate the spatial information redundancies present in the data. The
popular techniques used for spatial redundancy reduction are prediction of
data samples using some model, transformation of the original data from spa-
tial to frequency domain using methods such as Discrete Cosine Transform
(DCT), decomposition of the original dataset into different subbands as in
Discrete Wavelet Transformation (DWT), etc. In principle, this spatial re-
dundancy reduction potentially yields more compact representation of the
information in the original dataset, in terms of fewer transformed coefficients
or equivalent, and hence makes it amenable to represent the data with fewer
number of bits in order to achieve compression.

The next major step in a lossy data compression system is “quantization.”
Quantization techniques are applied on the decorrelated or transformed data,
in order to further reduce the number of symbols or coeflicients, by masking
nonsignificant parts and preserving only the meaningful information in the
data. This leads to reduction in entropy of the data, and hence makes it
further amenable to compression by allocating less number of bits for trans-
mission or storage. The reduction in entropy is achieved by dropping non-
significant information in the transformed data and preserving fewer signifi-
cant symbols only. For example, in case of an image transformed in frequency
domain, the high-frequency transformed coefficients can be dropped because
the human vision system is not sensitive to these. By preserving a smaller
number of transformed coefficients in the meaningful low-frequency range, we
can maintain the fidelity of the reconstructed image. The nature and amount
of quantization dictate the quality of the reconstructed data. The quantized
coefficients are then losslessly encoded, using some entropy encoding scheme
to compactly represent the quantized data for storage or transmission. Since
the entropy of the quantized data is less than that of the original one, it can
be represented by a smaller number of bits compared to the original data set
and hence we achieve compression.

The decompression system is just an inverse process to reconstruct the
data.

3.5 MEASURES OF COMPRESSION PERFORMANCE

As in any other system, the metrics of performance of a data compression
algorithm is an important criteria for its selection. The performance measures
of data compression algorithms can be looked at from different perspectives
depending upon the application requirements, namely, amount of compression
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achieved, objective and subjective quality of the reconstructed data, relative
complexity of the algorithm, speed of execution, etc. We explain some of these
below.

3.5.1 Compression ratio and bits per sample

The most popular performance measure of a data compression algorithm is
the ‘compression ratio’. It is defined as the ratio of the number of bits in
the original data to the number of bits in the compressed data. Consider a
gray scale image of size 256 x 256. If each pixel is represented by a single
byte, the image needs 65536 bytes of storage. If the compressed version of
the image can be stored in 4096 bytes, the compression ratio achieved by the
compression algorithm will be 16:1.

A variation of the compression ratio is ‘bits per sample’. This metric indi-
cates the average number of bits to represent a single sample of the data —
for example, bits per pizel for image coding. In case of an image, each pixel
represents a sample. On the other hand, in case of a text file, each sample
corresponds to a character in the text. If 65536 pixels of an image are com-
pressed to 4096 bytes, we can say that the compression algorithm achieved
0.5 bits per pixel on the average. Hence the bits per sample can be measured
by the ratio of the number of bits of a single uncompressed sample to the
compression ratio.

3.5.2 Quality metric

The quality or fidelity metric is important for lossy compression algorithms
used in video, image, voice, etc., because here the reconstructed data differs
from the original one and the human perceptual system is the ultimate judge
of the reconstructed quality. For example, if there is no perceivable difference
between the reconstructed data and the original version, then the compression
algorithm can be claimed to have achieved a very high quality or fidelity. The
difference of the reconstructed data from the original one is called the distor-
tion, and a lower distortion implies a higher quality of the reconstructed data.
A quality measure can either be very subjective based on human perception,
or be objectively defined using mathematical or statistical evaluation.

3.5.2.1 Subjective quality metric: There is no universally accepted mea-
sure for the subjective quality metrics. Often the subjective quality metric
is defined as the mean observer score (MOS). Sometimes it is also called the
mean opinion score. There are different statistical ways to compute MOS. In
one of the simplest methods, a statistically significant number of observers
are randomly chosen to evaluate the visual quality of the reconstructed im-
ages. All the images are compressed and decompressed by the same algorithm.
Each observer assigns a numeric score to each reconstructed image based on
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his or her perception of quality of the image, say, within a range 1-5 to de-
scribe the quality of the image, with 5 and 1 being the best and worst quality,
respectively. The average of the scores assigned by all the observers is the
MOS, and it is considered as a viable subjective metric if all the observers
are unbiased and evaluate the images under the same viewing or experimental
conditions. There are different variations of this approach to calculate MOS,
namely, absolute comparison, paired comparison, blind evaluation, etc.

The techniques of measurement of MOS could well be different for different
perceptual data. For example, the methodology to evaluate the subjective
quality of a still image could be entirely different from that for video or voice
data.

3.5.22 Objective quality metric: There is no universally accepted mea-
sure for the objective quality of data compression algorithms either. The most
widely used objective quality metrics are root-mean-squared error (RMSE),
signal-to-noise ratio (SIVR), and peak signal-to-noise ratio (PSNR). If I
is an M x N image and I is the corresponding reconstructed image after
compression and decompression, RM SFE is calculated as

M N
RMSE = \ Mlﬁ > Y1) - TP, (3.3)

where 1, 7 refer to the pixel position in the image. The SNR in decibel unit
(dB) is expressed as SNR =

Vs SLELIGD) ( S RRE) )
- lo 3 - R . -
RMSE 2&1 Z:I:], [I(’:J) - I(“,J)]z
(3.4)
In case of an 8-bit image, the corresponding PSNR in dB is computed as

20logy,

PSNR = 20log,, (%E) , (3.5)

where 255 is the maximum possible pixel value in 8 bits.

It should be noted that a lower RMSE (or equivalently, higher SNR or
PSNR) does not necessarily always indicate a higher subjective quality. In
fact these objective error metrics do not always correlate well with the subjec-
tive quality metrics. There are many cases where the PSNR of a reconstructed
image can be reasonably high, but the subjective quality is really bad when
visualized by human eyes. Hence the choice of the objective or subjective met-
rics, to evaluate a compression and decompression algorithm, often depends
upon the application criteria.

Similar objective quality metrics are used for audio and speech signals as
well.
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3.5.3 Coding complexity

When the computational requirement to implement the CODEC in a particu-
lar computing platform is an important criterion, we often consider the coding
complexity and computation time of a compression algorithm to be a perfor-
mance measure. Implementation of a compression algorithm using special
purpose digital signal processor (DSP) architectures is common in communi-
cation systems. In portable systems, the coding complexity is an important
criterion from the perspective of low-power hardware implementation. The
computational requirement is usually measured in terms of the number of
arithmetic operations and the memory requirement. Usually, the number of
arithmetic operations is described by MOPS (millions of operations per sec-
ond). But in compression literature, the term MIPS (millions of instructions
per second) is often used to measure the compression performance of a specific
computing engine’s architecture.

3.6 SOURCE CODING ALGORITHMS

From the information theoretic perspective, source coding can mean both
lossless and lossy compression. However, researchers often use it to indicate
lossless coding only. In the signal processing community, source coding is used
to mean source model based coding. In this section, we describe some basic
source coding algorithms such as Run-length coding and Huffman coding in
greater detail.

3.6.1 Run-length coding

Run-length coding is a simple approach to source coding when there exists
a long run of the same data, in a consecutive manner, in a dataset. As an
example, the data d = ‘6 6 6666 090555555222222134
4444.. contains long runs of 6’s, 5’s 2’s 4’s, etc. Rather than coding
each sample in the run individually, the data can be represented compactly
by simply indicating the value of the sample and the length of its run when
it appears. For example, if a portion of an image is represented by “5555 5
551919191919191919191919190000000 0 8 23 23 23 23 23 23,”
this can be run-length encoded as (5 7) (19 12) (0 8) (8 1) (23 6). For ease of
understanding, we have shown a pair in each parenthesis. Here the first value
represents the pixel, while the second indicates the length of its run.

In some cases, the appearance of runs of symbols may not be very apparent.
But the data can possibly be preprocessed in order to aid run-length coding.
Consider the data d = ‘26 29 32 35 38 41 44 50 56 62 68 78 88 98 108 118
116 114 112 110 108 106 104 102 100 98 96’. We can simply preprocess this
data by taking the sample difference e(i) = d(i) — d(¢ — 1), to produce the
processed data € =26 3333336666 1010101010 -2 -2 -2 -2 -2
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—2 -2 —2 -2 —2 —2'. This preprocessed data can now easily be run-length
encoded as (26 1) (3 6) (6 4) (10 5) (—2 11). A variation of this technique is
applied in the baseline JPEG standard for still picture compression [7]. The
same technique can be applied to numeric databases as well.

On the other hand, binary (black and white) images, such as facsimile,
usually consist of runs of 0’s or 1’'s. As an example, if a segment of a binary
image is represented as d =
“0000000001111111111100000000000000011100000000000001001111111111,”
it can be compactly represented as c(d) = (9, 11, 15, 3, 13, 1, 2, 10) by simply
listing the lengths of alternate runs of 0’s and 1’s. While the original binary
data d requires 65 bits for storage, its compact representation c(d) requires 32
bits only under the assumption that each length of run is being represented by
4 bits. The early facsimile compression standard (CCITT Group 3, CCITT
Group 4) algorithms have been developed based on this principle [8].

3.6.2 Huffman coding

In 1952, D. A. Huffinan [9] invented a coding technique to produce the shortest
possible average code length, given the source symbol set and the associated
probability of occurrence of the symbols. The Huffman coding technique is
based on the following two observations regarding optimum prefix codes.

o The more frequently occurring symbols can be allocated with shorter
codewords than the less frequently occurring symbols.

e The two least frequently occurring symbols will have codewords of the
same length, and they differ only in the least significant bit.

The average of the length of these codes is closed to the entropy of the source.
Let us assume that there are m source symbols {31, s2, ..., 8m} with asso-
ciated probabilities of occurrence {p1, pa, -.., Pm}. Using these probability
values, we can generate a set of Huffman codes of the source symbols. The
Huffman codes can be mapped into a binary tree, popularly known as the
Huffman tree. We describe below the algorithm to generate the Huffman
codes of the source symbols.

1. Produce a set N = {Ny, Na, ..., Ny} of m nodes as leaves of a binary

tree. Assign a node N; with the source symbol s;,i=1, 2, ..., m, and
label the node with the associated probability p;.
(Example: As shown in Fig. 3.3, we start with eight nodes Np, Ny,
N,, N3, N4, N5, Ng, Ny corresponding to the eight source symbols a, b,
¢, d, e, f, g, h, respectively. Probability of occurrence of each symbol is
indicated in the associated parentheses.)

2. Find the two nodes with the two lowest probability symbols from the
current node set, and produce a new node as a parent of these two nodes.
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Fig. 3.3 Huffman tree construction for Example 2.

(Example: From Fig. 3.3 we find that the two lowest probability sym-
bols g and d are associated with nodes Ng and Nj, respectively. The
new node Ng becomes the parent of N3 and Ng.)

. Label the probability of this new parent node as the sum of the proba-
bilities of its two child nodes.

(Example: The new node Ny is now labeled by probability 0.09, which
is the sum of the probabilities 0.06 and 0.03 of the symbols d and g
associated with the nodes N3 and Ng, respectively.)

. Label the branch of one child node of the new parent node as 1 and
branch of the other child node as 0.

(Example: The branch N; to Ng is labeled by 1 and the branch Ng to
Njg is labeled by 0.)

. Update the node set by replacing the two child nodes with smallest
probabilities by the newly generated parent mode. If the number of
nodes remaining in the node set is greater than 1, go to Step 2.

{Example: The new node set now contains the nodes Ny, Nj, N2, Ny,
Ns, Ny, Ny and the associated probabilities are 0.30, 0.10, 0.20, 0.09,
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0.07, 0.15, 0.09, respectively. Since there are more than one node in
the node set, Steps 2 to 5 are repeated and the nodes Ny, Ny, Nii,
Nig, N3, Ny4 are generated in the next six iterations, until the node
set consists of N4 only.)

6. Traverse the generated binary tree from the root node to each leaf node
N, i =1,2,...,m, to produce the codeword of the corresponding
symbol s;, which is a concatenation of the binary labels (0 or 1) of the
branches from the root to the leaf node.

(Example: The Huffman code of symbol k is “110,” formed by con-
catenating the binary labels of the branches N4 to N;3, N3 to Ny and
Ny to N7.)

Table 3.1 Huffiman code table

Symbol | Probability | Huffman

code

a 0.30 10

b 0.10 001

c 0.20 01

d 0.06 11111

e 0.09 000

i 0.07 1110

g 0.03 11110

h 0.15 110

3.6.2.1 Example 2: Assume an alphabet S = {a, b, ¢, d, ¢, f, g, h} with
probabilities p(a) = 0.30, p(b) = 0.10, p(c) = 0.20, p(d) = 0.06, p(e) = 0.09,
p(f) = 0.07, p(g) = 0.03 and p(h) = 0.15, respectively. The Huffman tree
for this source is depicted in Fig. 3.3, while the Huffman code is shown in
Table 3.1.

Let us consider a string M of 200 symbols generated from the above source,
where the numbers of occurrences of a, b, ¢, d, e, f, g and h in M are 60,
20, 40, 12, 18, 14, 6, and 30, respectively. Size of the encoded message M
using the Huffman codes in Table 3.1 will be 550 bits. Here it requires 2.75
bits per symbol on the average. On the other hand, the length of the encoded
message M will be 600 bits if it is encoded by a fixed length code of length
3 for each of the symbols. This simple example demonstrates how we can
achieve compression using variable-length coding or source coding techniques.
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3.7 PRINCIPAL COMPONENT ANALYSIS FOR DATA
COMPRESSION

Principal Component Analysis has been a popular technique for data compres-
sion. It forms the basis of the Karhunen—Loeve (KL) transform for compact
representation of data [5, 6, 10, 11]. The KL transform and the theory be-
hind principal component analysis are of fundamental importance in signal
and image processing. The principle has also found its place in data mining
for reduction of large-dimensional datasets. It has been successfully applied
to text analysis and retrieval for text mining as well [12]. The principal com-
ponent analysis has been developed based on the matrix theory for Singular
Value Decomposition (SVD).

According to singular value decomposition (SVD) theory, for any arbitrary
M x N matrix F of rank L there exists an M x M unitary matrix U and an
N % N unitary matrix V so that

UTFV = A%, (3.6)

where

>
[
I

A3 (L)

0 J

is an M x N diagonal matrix and the first L diagonal elements A% (%), for
i=1,2, ..., L, are called the singular values of input matrix F. Since U and
V are unitary matrices, we have

UUT = Iy,

vvT = Iy,

where Iy and Iy are the identity matrices of dimension M and N, respec-
tively. As a result, the input matrix F can be decomposed as

F=UA3VT, (3.7)
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The columns of U are chosen as the eigenvectors u,, of the symmetric matrix
FFT 50 that

T A1)
A(2)

UT(FFTYU = ' A(L) , (3.8)

0

where A(i), i = 1, 2, ..., L, are the nonzero eigenvalues of FFT. Similarly,
the columns of matrix V are eigenvectors v, of the symmetric matrix FTF
as defined by

[ A1) -
A(2)

VI(FTF)V = . (L) , (3.9)

0

-

where A(i),7 =1, 2, ..., L are the corresponding nonzero eigenvalues of FT F.
The input matrix can be represented in series form by these eigenvalues and
eigenvectors as

F=3Y A(uol. (3.10)
i=1
If the eigenvalues A(¢), for ¢ = 1,2, ..., L are sorted in decreasing order
and only first K from the sorted list are significant (K < L), then we can
approximate the input matrix F by a smaller-dimensional matrix F using
these first K eigenvalues and corresponding eigenvectors only.

The eigenvector corresponding to the highest eigenvalue of FTF is called
the first principal component. Likewise, the second principal component is the
eigenvector corresponding to the next highest eigenvalue of FTF, and so on.
Hence the kth principal component is the eigenvector corresponding to the
kth largest eigenvalue of FTF.

The principal component analysis-based data reduction technique has been
very popular in data mining, particularly to reduce the high-order dimension-
ality of data to lower orders. This is also the foundation of Karhunen—Loeve
Transform used in many multimedia processing applications [5, 6, 10, 11].
Latent Semantic Analysis (LSA) technique has been developed based on this
theory of SVD, using a compact representation of the data in terms of a few
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Fig. 3.4 A general image compression framework.

principal components only. LSA has been effectively applied in text analysis
suitable for text mining [12], and has been described in detail in Section 9.2.5.

3.8 PRINCIPLES OF STIiLL IMAGE COMPRESSION

The statistical analysis of a typical image indicates that there is a strong
correlation amongst neighboring pixels. This causes redundancy of informa-
tion in the image. In general, still image compression techniques rely on two
fundamental redundancy reduction principles, namely, Spatial and Statistical.
Spatial redundancy is the similarity of neighboring pixels in an image and is
reduced by decorrelating the pixels. The statistical redundancy reduction is
referred to as entropy encoding, accomplished by a source coding algorithm.

The general model of a still image compression framework is shown as a
block diagram in Fig. 3.4. The decorrelation or preprocessing block is the step
for reducing the spatial redundancy of the image pixels. In lossless coding
mode, this decorrelated image is directly processed by the entropy encoder.
On the other hand, for lossy compression, the decorrelated image is further
preprocessed as shown in Fig. 3.4 in order to mask irrelevant information
depending upon the application criteria. This process is popularly called
Quantization. The quantized pixels are then entropy-encoded using a source
coding algorithm to compactly represent the image. We now discuss different
image coding principles in the following sections.

3.8.1 Predictive coding

Since the adjacent pixels in a typical image are highly correlated, it is possible
to extract a great deal of information about a pixel from its neighboring pixel
values. In predictive coding, a pixel value is predicted by a set of previously
encoded neighboring pixels. For an ideal prediction model, the predicted value
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Fig. 3.5 DPCM showing (a) neighbors of pixel X to be encoded, (b) prediction func-
tion, and (c) block diagram.

of the pixel is similar to the actual value. But in reality, using an effective
prediction model, we can predict a pixel value which is very close to its actual
value. A practical approach to the prediction model is to take a linear com-
bination of the previously encoded neighboring pixels. The reason for taking
the previously encoded pixels is that the same pixels will be available to the
decoder, when it decodes the pixels in the same order that they were encoded.
The difference between the actual pixel value and the predicted value is called
differential or prediction error. The error value e is then entropy-encoded
using a variable-length encoding technique to generate the compressed im-
age. This method is popularly known as Differential Pulse Code Modulation
(DPCM). The block diagram is provided in Fig. 3.5(c).

In Fig. 3.5(a), let pixels A, B, C, D, E| F, G, and H be the immediate
neighbors of pixel X to be encoded. If we follow the raster scan order conven-
tion to access the image from left-to-right and top-to-bottom, the previously
encoded pixels available to the predictor will be A, B, C, D. We assume
that the prediction function is X, = A + 0.5B — 0.5C, using A, B, and C
only, as shown in Fig. 3.5(b). The prediction error e = X — X, has less en-
tropy as compared to X, because of the reduction in spatial redundancy. As
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Fig. 3.6 Histogram of (a) a typical image and (b) its prediction error.

a result, the error value e can be encoded by less number of bits to achieve
compression. Effectiveness of the error image for entropy encoding, as com-
pared to direct encoding of the image, can be explained by the corresponding
histograms shown in Fig. 3.6.

Statistical distribution of pixels in a typical image is uniform distribution
in nature, as shown in Fig. 3.6(a). Because of uniform distribution, average
number of bits per pixels in the range [0, 255 will be eight. In Fig. 3.6(b), we
provide the statistical distribution of the prediction error values of the same
image after applying the DPCM technique. The prediction error values belong
to the range [—255,+255]). It is clear from Fig. 3.6(b) that the statistical
distribution of the prediction errors of a typical image is Laplacian in nature,
and most of the prediction errors are skewed around zero. As a result, we can
apply a statistics-based entropy encoding technique to allocate smaller binary
codes to the prediction error values close to zero and larger codes to bigger
error values. Hence the average number of bits per pixel error will be less
than eight, thereby resulting in compression.

3.8.2 Transform coding

In predictive coding, the coding process takes place pixel by pixel. Transform
coding is an effective way of coding a group of spatially correlated pixels [10].
This technique takes advantage of the fact that the energy of most natural
images is mainly concentrated in the low-frequency regions.

A suitable transformation technique produces fewer number of correlated
transformed coefficients as compared to the original image, and a significant
amount of image information is concentrated in these fewer correlated trans-
formed coefficients. As a result, we can discard or mask the insignificant
transformed coefficients, mainly consisting of the high-frequency components,
using a suitable quantization technique without affecting the desired recon-
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Fig. 3.7 Transform coding-based (a) compression and (b) decompression.

structed image quality. This is possible because the human visual system has
perceptual masking effects, so that the high-frequency components are not as
sensitive to reconstruction errors as compared to their low-frequency counter-
parts. If the quantization process is not too coarse, then the reconstructed
image can be perceptually similar to the original one.

The general framework for transform coding-based image compression sys-
tems is depicted in Fig. 3.7(a). Usually the input image is first divided into a
number of smaller rectangular blocks B. Each of these blocks are then inde-
pendently transformed, using the chosen linear transformation technique. The
transformed coefficients are quantized and entropy encoded into bit-stream
¢(B) in order to achieve compression. During the decompression, as shown
in Fig. 3.7(b), the compressed bit stream ¢(B) is first entropy-decoded to
generate the quantized coefficients. This is followed by inverse quantization
in order to generate an approximation of the transformed coefficients. The
inverse transformation is applied on these coefficients to reconstruct the im-
age block B’. The composition of the reconstructed image blocks forms the
reconstructed image, as shown in Fig. 3.7(b).

In transform coding, the selection of the transformation technique is a
major decision. The main motivation behind transformation from the spatial
domain to another domain (usually frequency domain) is to represent the
data in a more compact form in the transformed domain. The optimum
transformation also minimizes the mean squared error of the reconstructed
image. The Karhunen—Loeve Transform (KLT) [5, 10] has been proven to
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Fig. 3.8 Three-level multi-resolution wavelet decomposition and reconstruction of a
signal.

be optimal in terms of the compaction efficiency, by representing the image
using few principal components containing a significant portion of the image
information. KLT packs the most energy of an image block in the least number
of transformed coefficients. It completely decorrelates the pixels, and hence
minimizes the spatial redundancy in the image block.

Although KLT is optimum, it is not efficient for practical immplementa-
tions. The basis functions of KLT are input data-dependent, because they
are formed by the eigenvectors of the autocorrelation matrix of the input sig-
nal. There is no fast algorithm for practical implementation of KLT, because
of its dependency on the input source signal. As a result, we have to choose
a suboptimal transform, so that the basis functions are not signal-dependent
and a fast algorithm can exist in order to have a practical implementation. A
number of suboptimal transforms like the Discrete Fourier Transform (DFT),
Discrete Cosine Transform (DCT), Discrete Sine Transform (DST), and Dis-
crete Hadamard Transform (DHT), to name a few, have been used in digital
image compression {6, 10]. Of these the DCT is the most popular block-based
transform, because its performance is very close to that of KLT and a number
of fast algorithms exist for DCT [13]. DCT is the basis for most of the im-
age and video compression algorithms, especially the still image compression
standard JPEG in lossy mode and the video compression standards MPEG-1,
MPEG-2, MPEG-4, H.263, etc. [14].

3.8.3 Wavelet coding

Representation of a signal using Fourier series in terms of the sinusoids is well
known in the signal processing community, provably for more than a century,
and is known to be effective for stationary as well as nonstationary signals.
The non-stationary signals are not statistically predictable, especially in the
regions of discontinuities. In a typical image, discontinuities occur at the
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Fig. 3.9 Three level multiresolution wavelet decomposition of an image.

edges. The basics of wavelet representation of signals have been discussed
in Section 2.2.7, using Eq. (2.32) and Fig. 2.7. In this section, we introduce
how the wavelet transformation is applied in image coding. Wavelet coding
is a transform coding technique that is not limited to the block-based im-
plementation only. Usually the wavelet transform is performed on the whole
image. Wavelet transform decomposes the input signal into low-frequency
and high-frequency subbands.

In 1989, Mallat [15] proposed the multiresolution approach for wavelet
decomposition of signals using a pyramidal FIR filter structure of QMF filter
pairs, which practically mapped the wavelet decomposition into the subband
coding paradigm. Once we express the wavelet decomposition in terms of
FIR filters, the same general principles of subband coding of digital images
applies. In multiresolution analysis, it can be proven that the decomposition
of signals using discrete wavelet transform can be expressed in terms of FIR



PRINCIPLES OF STILL IMAGE COMPRESSION 111

filters [16] as
emn(F) =Y Gm_14(f)g2n (3.11)
k

Omn(f) =Y am-14(f)h2a-k, (3.12)
k

where g and h are the high-pass and low-pass discrete FIR filters whose co-
efficients are related as g; = (—1)*h_;4;. If the input signal f(t) is given in
discrete sampled form, say agn(f), to indicate original discrete samples at
resolution 0, then the above equations describe a multiresolution subband de-
composition of samples into am n(f) and cm n(f) at level m using the subband
decomposed samples ¢,—1 n,(f) at level m — 1, with a low-pass FIR filter h
and high-pass FIR filter g. The output subbands in every level are formed by
retaining every other filtered output sample, which results in decimation of
the output by a factor of 2. These filters are called the analysis filters. Using
the corresponding synthesis filters k' and g', it can be shown that the signal
ap,» can be exactly reconstructed in m levels using the formula

a'm—l,i(f) = Z a’m,n(f)hgn—i + Z cm.ﬂ(f)g;n—i' (313)

Figure 3.8 depicts the multiresolution decomposition approach using the anal-
ysis filters g and h, and reconstruction of the same using synthesis filters g’
and h'.

Image compression techniques using Discrete Wavelet Transform (DWT)
have received wide attention in recent years [17, 18]. Using a separable two-
dimensional filtering function, two-dimensional DWT can be computed by
applying one-dimensional DWT row-wise and column-wise independently. In
Fig. 3.9, we show an example of hierarchical wavelet decomposition of an
image into ten subbands after three levels of decomposition. After the first
level of decomposition, the original image is decomposed into four subbands
LL1, HL1, LH1, and HH1. The LL1 subband is the low-frequency subband
which can be considered as a 2:1 subsampled (horizontally and vertically)
version of the original image I, and its statistical characteristic is similar to
the original image as shown by the shaded regions in Fig. 3.9. Here HLI,
LH1, and HH]1 are called the high-frequency subbands, where HL1 and
LH1 correspond to the horizontal and vertical high frequencies, respectively.
HH]1 constitutes the high frequencies that are not in either horizontal or
vertical orientations. Each of these spatially oriented (horizontal, vertical, or
diagonal) subbands mostly contain information of local discontinuities in the
image, and the bulk of the energy in each of the high-frequency subbands are
concentrated in the vicinity of areas which correspond to edge activity in the
original image.

Since the low-frequency subband LL1 has similar spatial and statistical
characteristics as the original image, it can be further decomposed into four
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subbands LL2, HL2, LH2, and HH2. Continuing the same method for de-
composition in LL2, the original image is decomposed into 10 subbands LL3,
HL3, LH3, HH3, HL2, LH2, HH2, HL1, LH1, and HH1 after three lev-
els of pyramidal multiresolution subband decomposition, as shown in Fig. 3.9.
The same procedure can continue to further decompose LL3 into higher levels.

Using the right wavelet filters and choosing an effective quantization strat-
egy for each subband can yield good compression performance. Each decom-
posed subband may be encoded separately using a suitable coding scheme.
We can allocate different bit-rates to different subbands. Because of the hier-
archical nature of the subbands in wavelet decomposition, a smaller number
of bits need to be allocated to the high-frequency subbands in a lower level as
compared to the high-frequency subbands in upper levels. This helps maintain
good fidelity of the reconstructed image and thereby achieves good compres-
sion. Experimental results show that we can even allocate zero bits to the
HH1 subband and still maintain good reconstructed quality in most of the
natural images.

3.9 IMAGE COMPRESSION STANDARD: JPEG

JPEG is the acronym for Joint Photographic Fxperts Group. It is the first
international image compression standard for continuous-tone still images,
including both gray scale and color images [7]. The goal of this standard is
to support a variety of applications for compression of continuous-tone still
images (i) of different sizes, (ii) in any color space, (iii) in order to achieve com-
pression performance at or near the state of the art, (iv) with user-adjustable
compression ratios, and (v) with very good to excellent reconstructed quality.
Another goal of this standard is that it should have manageable computa-
tional complexity for widespread practical implementation. JPEG defines the
following four modes of operation {7].

1. Sequential Lossless Mode: Compress the image in a single scan, and the
decoded image is an exact replica of the original image.

2. Sequential DCT-Based Mode: Compress the image in a single scan using
DCT-based lossy compression technique. As a result, the decoded image
is not an exact replica but an approximation of the original image.

3. Progressive DCT-Based Mode: Compress the image in multiple scans
and also decompress the image in multiple scans, with each successive
scan producing a better quality image.

4. Hierarchical Mode: Compress the image at multiple resolutions for dis-
play on different devices.

The three DCT-based modes (2, 3, and 4) in JPEG provide lossy com-
pression, because the precision limitation to digitally compute DCT (and
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its inverse) and the quantization process introduce distortion in the recon-
structed image. For sequential lossless mode of compression, predictive coding
(DPCM) is used instead of the DCT-based transformation and also there is
no quantization involved. The simplest form of sequential DCT-based JPEG
is called the baseline JPEG algorithm. We shall describe the JPEG lossless
algorithm and the baseline JPEG algorithm in greater detail in the following
two sections.

3.10 THE JPEG LOSSLESS CODING ALGORITHM

Lossless JPEG compression is based on the principles of predictive coding. In
this scheme, the value of a pixel X is first predicted by using one or more of the
previously encoded adjacent pixels A, B, and C as shown in Fig. 3.10(a). It
then encodes the difference between the original pixel and its predicted value,
usually called the prediction error or prediction residual, by either Huffman
coding or binary arithmetic coding (QM-coder) [7].

B|C
Al X
(a)
Lossless Encoder
i Entropy :
1 Predictor Encoder _,L’|:|
: «  Compressed
Input STTTTTTTmTmomsooseso t ------- *  Image Data
Image Data
Table
Specification

(®)

Fig. 3.10 JPEG lossless model with (a) 3-pixel prediction neighborhood and (b) en-
coder diagram.

There are eight possible options for prediction as shown in Table 3.2. Op-
tions 1 to 3 are one-dimensional predictors, while options 4 to 7 deal with two
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dimensions. Depending upon the nature of the image, one predictor may yield
better compression result as compared to another. However, experimental re-
sults on various kinds of images show that on the average their performance
are relatively close to each other [19]. The chosen option for prediction is
indicated in the header of the compressed file, so that both the encoder and
decoder use the same function for prediction.

Table 3.2 Prediction functions in lossless JPEG

Option | Prediction function Type of prediction
0 No prediction Differential Coding
1 Xp=A4 1-D Horizontal Prediction
2 Xpo=B 1-D Vertical Prediction
3 Xp=C 1-D Diagonal Prediction
4 Xp=A+B-C 2-D Prediction
5 Xp,=A+i(B-0C) 2-D Prediction
6 |Xx,=B+ia-0) 2-D Prediction
7 X, = %(A+ B) 2-D Prediction

Table 3.3 Categories of prediction error values

Category Prediction error value
0 0
1 -1, +1
2 -3,-2, +2, 43
3 =Ty, 4, 44, . +T
4 —15,...,-8, +8, ..., +15
5 —-31,...,—16, 416, ..., +31
6 —63,...,-32, +32, ..., +63
7 -127,...,—64, +64, ..., +127
8 —255,...,—128, +128, ..., +255
9 ~511,...,—256, +256, ..., +511
10 -1023,...,-512, +512, ..., +1023
11 —2047,...,-1024, +1024, ..., 42047
12 ~4095,...,—2048, +2048, ..., +4095
13 —8191, ..., -4096, +4096, ..., +8191
14 —16383,...,—8192, +8192, ..., +16383
15 —32767,...,—16384, +16384, ..., +32767
16 +32768

In the lossless mode, the standard allows precision P of the input source
image to be 2 bits to 16 bits wide. Since there is no previously encoded pixel



THE JPEG LOSSLESS CODING ALGORITHM 115

known to the encoder when it encodes the very first pixel in the very first row
of the image, it is handled differently. For a given input precision P and a
point transform parameter P;, the predicted value for the first pixel in the first
line is 2P~P~1, By default, we can assume P, = 0. For details of the point
transform parameter, the reader is advised to consult the JPEG standard {7].
For all other pixels (except the first one) in the first line, we use option 1 for
prediction function. Except for the first line, option 2 is used to predict the
very first pixel in all other lines. For all other pixels, we select one of the eight
options for prediction function from Table 3.2. Once a predictor is selected,
it is used for all other pixels in the block.

In lossless JPEG standard, the prediction error values are computed mod-
ulo 2'¢ to take into consideration the full precision allowed in this mode.
These error values are first represented as a pair of symbols (CATEGORY,
MAGNITUDE). The first symbol CATEGORY represents the category of the
error value. The second symbol MAGNITUDE represents the Variable-Length
Integer (VLI) for the prediction error value. CATEGORY represents the number
of bits to encode MAGNITUDE in terms of VLI. All the possible prediction er-
ror values, modulo 2'¢, and their corresponding categories are shown in Table
3.3. Only the cATEGORY in the symbol pair for each prediction error value
is Huffman coded.

The codeword for the symbol pair (CATEGORY, MAGNITUDE) is formed
in two steps. First it assigns the Huffman code of the carecory. This
Huffman code is then appended with additional cATEGORY number of bits
to represent the MAGNITUDE in VLI. If the prediction error value is positive,
the MAGNITUDE is directly binary represented by a VLI using cATEGORY
number of bits and hence it starts with bit 1. If the error value is negative,
the VLI is 1’s complement of its absolute value and hence it starts with bit 0.

For example, the prediction error value “25” is represented by the pair (5,
25) because the number 25 belongs to category 5 in Table 3.3 and hence 25 is
represented by a 5-bit VLI. If the Huffman code for category 5 is “011,” then
the binary codeword for the error value 25 will be “01111001.” The first three
bits correspond to the Huffman code “011” for category 5 and next 5 bits
“11001” is the VLI for 25. Similarly, the prediction error value —25 will be
represented as “01100110.” Here the last 5 bits ‘00110’ is the 1’s complement
of “11001” to represent —25 and, since —25 belongs to the same category 5,
the first three bits of the codeword correspond to Huffinan code of category
5.

Use of the cATEGORY of the error values greatly simplifies the Huffman
coder. Without this categorization, we would require to use a Huffman table
with 26 entries for all the 21¢ possible symbols of prediction error values.
Detailed information for implementation of the JPEG lossless coding can be
found in Annex H of the JPEG standard [7].
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3.11 BASELINE JPEG COMPRESSION

Among the four modes of the JPEG family, the baseline JPEG compression
algorithm is most widely used. It is defined for compression of continuous-tone
images with one to four components. The number of components for gray scale
images is one, whereas a color image can have up to four color components.
The baseline JPEG allows only 8-bit samples within each component of the
source image. An example of a four-component color image is a CMYK (cyan,
magenta, yellow and black) image which is used in many applications such as
printing, scanning etc.

A color image for display has three color components RGB (red, green and
blue). In a typical color image, the spatial intercomponent correlation be-
tween the red, green, and blue color components is significant. In order to
achieve good compression performance, the correlation between color compo-
nents is first reduced by converting the RGB image into a decorrelating color
space. In baseline JPEG, a three-color RGB image is first transformed into a
Luminance-Chrominance (L-C) color space such as YCbCr, YUV, CIELAB,
etc. The advantage of converting an image into Luminance-Chrominance
color space is that the luminance and chrominance components are very much
decorrelated between each other. Moreover, the chrominance channels contain
many redundant information and can easily be subsampled without sacrificing
any visual quality of the reconstructed image.

3.11.1 Color space conversion

In this section, we consider color space conversion only from RGB to YCbCr
and vice versa. There are several ways to convert from RGB to YCbCr color
space. Here we adopt the CCIR (International Radio Consultative Commit-
tee) Recommendation 601-1. This is the typical method for color conversion
used in baseline JPEG compression. According to CCIR 601-1 Recommen-
dation, the transformation from RGB to YCbCr is done based on the math-
ematical expression

Y 0.29900 0.58700  0.11400 R
Cb | =1 -0.16874 —0.33126  0.50000 G
Cr 0.50000 —0.41869 —0.08131 B

Color space conversion from RGB to YCbCr using the above transformation
may result in negative numbers for Cb and Cr, while Y is always positive. In
order to represent Cb and Cr as unsigned 8-bit integers, they are level-shifted
by adding 128 to each sample followed by rounding and saturating the value
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in the range [0, 255]. Hence the above transformation can be expressed as

Y 0.29900 0.58700 0.11400 R 0

Ch = —0.16874 —0.33126 0.50000 G -+ 128 },

Cr 0.50000 —-0.41869 -—0.08131 B 128
(3.14)

in order to produce 8-bit unsigned integers for each of the components in the
YCbCr domain. Accordingly, the inverse transformation from YCbCr to RGB

is done as

R 1.0 0.0 1.40210 Y 0
G | =] 1.0 -0.34414 -0.71414 Cb | —| 128 |. (3.15)
B 1.0 1.77180 0.0 Cr 128
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Fig. 3.11 Definition of MCUs for (a) YCbCr 4:4:4, (b) YCbCr 4:2:2, (c) YCbCr 4:2:0.

After the color space conversion, most of the spatial information of the
image is contained in the luminance component (Y). The chrominance com-
ponents (Cb and Cr) contain mostly redundant color information, and we lose
little information by subsampling these components both horizontally and/or
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vertically. We can subsample the chrominance components by simply throw-
ing away every other sample in each row and/or each column, if desired. If
we subsample the redundant chrominance components both horizontally and
vertically, the amount of data required to represent the color image is reduced
to half because each chrominance component now has only half resolution
both in horizontal and vertical directions. This color format is called 4:2:0
color subsampling format.

Baseline JPEG also supports 4:2:2 and 4:4:4 color formats. Each chromi-
nance component in the 4:2:2 color format has the same vertical resolution
as the luminance component, but the horizontal resolution is halved by drop-
ping alternate samples in each row. In the 4:4:4 format, both the chrominance
components Cb and Cr have identical vertical and horizontal resolution as the
luminance component. Hence no subsampling is done here. The subsampling
operation to generate the 4:2:0 or 4:2:2 color format is the first lossy step.

3.11.2 Source image data arrangement

In the previous section we have seen that the dimension of each of the color
components Y, Cb, and Cr could be different, depending upon the color sub-
sampling format. Each color component is divided into 8 x 8 nonoverlapping
blocks. Selecting one or more such data blocks from each of the color com-
ponents, we can form what is called a minimum coded unit (MCU) in JPEG.
The standard defines the arrangement of the data blocks in either interleaved
or noninterleaved scanning order of the color components. In a noninterleaved
scan, the data blocks in each color component are stored and processed sep-
arately in raster scan order, left-to-right and top-to-bottom. In interleaved
order, data blocks from all the color components appear in each MCU. Def-
inition of the MCUs for 4:4:4, 4:2:2, and 4:2:0 formats of YCbCr images in
interleaved scan is shown in Fig. 3.11.

Each dot in Fig. 3.11 represents an 8 x 8 data block. In 4:4:4 format
interleaved scan, each MCU consists of a data block from each of the Y, Cb,
and Cr component as shown in Fig. 3.11(a). The order of processing these
blocks is in the scan order from left-to-right and top-to-bottom. For example,
the first MCU consists of the first data block YOO from the Y component
followed sequentially by the first data blocks Cb00 from the Cb component
and Cr00 from the Cr component as shown in Fig. 3.11(a). The next MCU
consists of Y01, Cb01, and Cr01, respectively. After all the MCUs consisting
of the 8 x 8 data blocks from the first row (as depicted in Fig. 3.11(a)) are
encoded, the second row of 8 x 8 blocks are scanned in a similar fashion. This
procedure is continued until the last 8 x 8 block in the raster scan is encoded.

In 4:2:2 format, each MCU consists of a 2 x 2 unit of four data blocks from
the Y component followed by a 2 x 1 unit of two data blocks from each of
the Cb and Cr components. The corresponding order of processing is shown
in Fig. 3.11(b). In 4:2:0 format, each MCU consists of 2 x 2 units of four
data blocks from the Y component followed by one from each of the Cb and
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Cr components, and the corresponding order of processing is illustrated in
Fig. 3.11(c).

3.11.3 The baseline compression algorithm

The baseline JPEG algorithm follows the principles of block-based transform
coding. Block diagram of the baseline JPEG algorithm for a gray scale image
with a single component is shown in Fig. 3.12. For a color image, the same
algorithm is applied to each 8 x 8 data block based on the source image data
arrangement described in Section 3.11.2.

Input Image Data ENCODER

L . Zig-zag Entropy @
' ! FDCT Quantizer ordering Encoding J
1o v Compressed

"‘.'.‘."."T" RERhhEhh by j‘ """"""""""""""""""" ‘I """"" Image Data

Quantization Entropy
8x8 Table Table
Blocks Specifications Specifications
(@)

DECODER i

|
JIOF O G
o

Compressed 5 H
ImageData  '-------- { ----------------------------------- 1--—-—---«—------~--—----' S
Reconstructed
Entropy Quantization Image Data
Table Table
Specifications Specifications

®

Fig. 3.12 JPEG baseline (a) compression and (b) decompression.

The image component is first divided into nonoverlapping 8 x 8 blocks in
the raster scan order left-to-right and top-to-bottom as depicted in Fig. 3.12(a).
Each block is then encoded separately by the Encoder, shown by the broken
box in Fig. 3.12(a). The first step is to level shift each pixel in the block to
convert into a signed integer, by subtracting 128 from each pixel. Each level
shifted pixel in 8 x 8 block is then transformed into the frequency domain
via forward DCT (FDCT). The FDCT of 8 x 8 block of pixels f(z,y) for
(z,y=0,1,...,7) is defined as

7 7
F(u,v) = iC(u)C(’u) Z Z f(z,y) cos

z=0y=0

[w(leg l)u] cos [w(2y1-6+ l)v] ,

(3.16)
foru=0,1,...,7and v=0,1,...,7, where
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L. fork=0
={ V2
Clk) { 1  otherwise.

The transformed 8 x 8 block now consists of 64 DCT coefficients. The first
coefficient F'(0,0) is the DC component of the block, while the other 63 co-
efficients are the AC components AC, , = F(u,v) of the block as shown in
Fig. 3.13. The DC component F(0,0) is essentially the sum of 64 pixels in
the input 8 x 8 pixel block multiplied by the scaling factor $C(u)C(v) = §,
as in Eq. (3.16).

ACo ACo7
o|d|o|efo]e]a]|s
o|ej/o o0 e|e]e
o |e|o|e|oe|e]|e
o o e o]0 0o eAC,
o |o|/o(eo 0 jefee

AC ; ® o (0|0 0 0o
ejeo|o|/e|o 0|0
ple|a|o|o|e]e o\
AC 0 AC 72 AC 77

Fig. 3.13 DC and AC components of the transformed block.

The next step in the compression process is to quantize the transformed
coefficients. This step is primarily responsible for losing information, and
hence introduces distortion in the reconstructed image. That is the reason
why baseline JPEG is a lossy compression. Each of the 64 DCT coefficients
are uniformly quantized. The 64 quantization step-size parameters for uni-
form quantization of the 64 DCT coefficients form an 8 x 8 Quantization
Mairiz. Each element in the Quantization Matriz is an integer between 1 and
255. Each DCT coefficient F'(u,v) is divided by the corresponding quantizer
step-size parameter Q(u, v) in the Quantization Matriz and is rounded to the
nearest integer as

F,(u,v) = Round (M) (3.17)
" Qu,v)/ '
The JPEG standard does not define any fixed Quantization Mairiz, and it is
the prerogative of the user to select the matrix. There are two quantization
matrices provided in Annex K of the JPEG standard for reference, but not as
a requirement. These two quantization matrices are shown in Tables 3.4 and
3.5, respectively.
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Table 3.4 Luminance Quantization Matriz

16
12
14
14
18
24
49
72

11
12
13
17
22
35
64
92

10
14
16
22
37
55
78
95

16
19
24
29
56
64
87
98

24
26
40
51
68
81
103
112

40
58
57
87
109
104
121
100

51
60
69
80
103
113
120
103

61
55
56
62
7
92
101
99

Table 3.5 Chrominance Quantization Matriz

17
18
24
47
99
99
99
99

18
21
26
66
99
99
99
99

24
26
56
99
99
99
99
99

47
66
99
99
99
99
99
99

99
99
99
99
99
99
99
99

99
99
99
99
99
99
99
99

99
99
99
99
99
99
99
99

99
99
99
99
99
99
99
99

121
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Fig. 3.14 Encoding of quantized DCT coefficients, with (a) zig-zag ordering of AC
coetlicients, aud (b) differential codiug of DC.

Table 3.4 is the Luminance Quantization Matriz for quantizing the trans-
formed coeflicients of the luminance component of an itnage. Similarly, Table
3.5 is the Chrominance Quantization Matriz for quantizing the transformed
coefficients of the chrominance components of the image. These two quanti-
zation tables have been designed based on the psychovisual experiments by
Lohscheller [20] to determine the visibility thresholds for 2-D basis functions.
These tables may not be suitable for all kinds of images, but they provide
reasonably good result for most natural images with 8-bit precision for lumi-
nance and chrominance samples. If the elements in these tables are divided by
2, we get perceptually lossless compression, whereby the reconstructed image
is indistinguishable from the original one by human eyes. When the quanti-
zation tables are designed based on the perceptual masking properties of the
human eye, many of the small DCT coefficients (high-frequency samples) are
zeroed out to aid significant compression. This is done by using larger quanti-
zation step-size parameters for higher-frequency AC components, as depicted
in Tables 3.4 and 3.5.

Quality of the reconstructed image and the achieved compression can be
controlled by a user, by selecting a quality factor Q_JPEG to tune the el-
ements in the quantization tables, as proposed by the Independent JPEG
Group and implemented in their software [21]. The value of Q_JPEG may
vary from 1 to 100. The quantization matrices in Tables 3.4 and 3.5 have
been set for Q.J fEG = 50. For other Q.JPEG values, each element in both
the tables are simply scaled by a factor o defined as [21]

T8 if1<QUPEG <50,
*= (3.18)
2 - IBEC if 50 < QIPEG < 100,
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subject to the condition that the minimum value of the scaled quantization
matrix elements aQ(u,v) is 1. For the best reconstructed quality, Q_JPEG
is set to 100.

After quantization of the DCT coefficients, the quantized DC coefficient
is encoded by differential encoding. The DC coefficient DC; of the current
block is subtracted from the DC coefficient DC;_; of the previous block and
the difference

DIFF, = DC;i_, — DC; (3.19)

is encoded as shown in Fig. 3.14(b). This is done to exploit the spatial corre-
lation between the DC values of the adjacent blocks.

Encoding of the AC coefficients is not straightforward. Instead of encoding
each AC coefficient in the block, only the significant (nonzero) coefficients
are encoded in an efficient manner such that the runs of zeros preceding a
nonzero value is embedded into the encoding. Usually there are few signifi-
cant low-frequency AC coefficients in the whole 8 x 8 block, and most of the
higher-frequency coefficients are quantized to zeros. In order to exploit this
property, the AC coefficients are ordered in a particular irregular order se-
quence as shown in Fig. 3.14(a). This irregular ordering of the AC coefficients
is called the zig-zag ordering. It is done to keep the low-frequency coefficients
together, and it forms long runs of zeros corresponding to the higher-frequency
quantized coefficients. This zig-zag sequence is then broken into runs of zeros
ending in a nonzero value.

Before we explain the entropy encoding procedure, let us demonstrate the
results of level shifting, DCT, quantization, and zig-zag ordering with an ex-
ample 8 x 8 block extracted from a natural image.

110 110 118 118 121 126 131 131
108 111 125 122 120 125 134 135
106 119 129 127 125 127 138 144
110 126 130 133 133 131 141 148
115 116 119 120 122 125 137 139
115 106 99 110 107 116 130 127
110 91 82 101 99 104 120 118
103 76 70 95 92 91 107 106

Example: One 8 x 8 data block
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-18 -18 -10 -10 -7 -2 3 3

-20 -17 -3 -6 -8 -3 6 7

-22 -9 1 -1 -3 -1 10 16

-18 -2 2 5 5 3 13 20

-13 -12 -9 -8 -6 -3 9 11

-13 -22 -29 -18 -21 -12 2 -1

-18 -37 —-46 27 20 -24 -8 -10

-25 -52 -58 -33 -36 -37 -21 -22

Level shifted 8 x 8 data block

—89.00 -63.47 18.21 —-6.85 7.50 1345 -7.00 0.13
7414 -290 -1993 -21.04 -17.88 -10.81 8.29 5.26
-63.65 3.10 5.08 14.82 10.12 9.33 1.31 -0.62
3.73 2.85 6.67 899 -3.38 1.54 1.04 -0.62
2.50 0.57 —4.46 0.52 3.00 -—-2.89 -0.32 1.33
752 -180 -0.63 -—0.10 0.41 -3.21 -2.714 =207
-3.40 0.43 0.81 028 —-040 -0.19 -0.58 -1.09
-226 -0.88 1.73 0.23 -0.21 -0.12 1.23 1.61

DCT coeflicients of the above 8 x 8 block
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Results of DCT coefficients quantized by Luminance Quantization Matriz

The entropy encoding procedure for the differentially encoded DC coef-
ficient is identical to the entropy encoding of the prediction error values, as
explained in Section 3.10 for lossless JPEG. For 8-bit images in baseline JPEG,
the DCT coefficients fall in the range [—1023,+1023]. Since the DC coeffi-
cient is differentially encoded, the differential value of DC falls in the range
[—2047,+2047]. Assuming that the DC coefficient of the previous block is —4
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as an example, we get the differential DC value of the present block to be
—2. Using Table 3.3, we find that this belongs to category 2 and hence —2 is
described as (2, “01”). If the Huffinan code of category 2 is “011,” then —2is
coded as “01101,” where the last two bits “01” represent the variable-length
integer (VLI) code of —2. There are two Huffman tables (Tables K.3 and K .4)
for encoding the DC coefficients in Annex K of the baseline JPEG standard
for reference. But the user can choose any table and add them as part of the
header of the compressed file [7]. Table K.3 is supplied for coding the Lumi-
nance DC differences as a reference. Table K.4 is supplied for Chrominance
DC differences.

After zig-zag ordering of the AC coeflicients in the example, the resulting
sequence becomes
“—-66-5020-100000-100-11000000000000000000
0000000000000000000000000000.7
This sequence of AC coefficients can be mapped into an intermediate se-
gquence of combination of two symbols symbol, and symbol,. Here symbol;
is represented by a pair (RUNLENGTH, CATEGORY ), where RUNLENGTH is
the number of consecutive zeros preceding the nonzero AC coefficient being
encoded and cATEGORY is the number of bits to represent the VLI code of
this nonzero AC coefficient. Again symbols is a single piece of information
designated (aMPLITUDE), which is encoded by the VLI code of the nonzero
AC coefficient. Accordingly, the zig-zag sequence in the example can be com-
pactly represented as

(0, 3)(=6), (0, 3)(6), (0, 3)(=5), (1, 2)(2), (1, 1)(=1), (5, 1)(=1), (2, 1)(=D),
(0, )(1), (0, 0).

The first significant (nonzero) AC coefficient in the zig-zag sequence is found to
be —6. It is represented as (0, 3)(—6) because it precedes with no run of zeros
(i.e., RUNLENGTH = 0) and the AMPLITUDE = —6 belongs to CATEGORY
= 3. Similarly, the following two nonzero coefficients 6 and —5 are repre-
sented as (0, 3)(6) and (0, 3)(—5), respectively. The next significant coeffi-
cient 2 is represented by (1, 2)(2) because it precedes a zero coefficient (i.e.,
RUNLENGTH = 1) and AMPLITUDE = 2 belongs to CATEGORY = 2. Again,
the next significant symbol is represented as (1, 1)(—1). The following sig-
nificant coefficient —1 is represented as (5, 1)(—1) because it precedes five
zeros (i.e., RUNLENGTH = 5) and AMPLITUDE = —1 belongs to CATEGORY
= 1. Following the same procedure, the next two nonzero coefficients —1
and 1 are represented by (2, 1)(—1) and (0, 1)(1), respectively. There are no
other nonzero coefficients in the remaining of the zig-zag sequence. A special
symbol (0, 0) is used to indicate that the remaining elements in the zig-zag
block are all zeros. Each (RUNLENGTH, CATEGORY) pair is encoded using a
Huffman code, while the corresponding AMPLITUDE is encoded by the VLI
code.
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There are two special symbols in encoding the zig-zag sequence of AC
coefficients, namely, (0, 0) and (15, 0). The first special symbol (0, 0) is
referred as EOB (end-of-block), to indicate that the remaining elements in
the zig-zag block are zeros. The other special symbol (15, 0) is also referred
as ZRL (Zero-Run-Length) and is used to indicate a run of 16 zeros. Maximum
length of a run of zeros allowed in baseline JPEG is 16. If there are more than
16 zeros, then the run is broken into a number of runs of zeros of length 16.
For example, consider 57 zeros before a nonzero coefficient, say —29. This
will be represented by (15, 0) (15, 0) (15, 0), (9, 5)(—29). Here the first three
(15, 0) pairs represent 48 zeros and (9, 5)(—29) represents 9 zeros followed by
the coefficient —29 which belongs to category 5.

The baseline JPEG allows a maximum of four Huffman tables, — that is,
two for encoding AC coefficients and two for encoding DC coefficients. In
luminance—chrominance image data, usually two Huffman tables (one for AC
and one for DC) each are used for encoding the luminance and chrominance
data. The Huffman tables used during the compression process are stored as
header information in the compressed image file, in order to uniquely decode
the coefficients during the decompression process. There are two Huffman
tables (Tables K.5 and K.6) for encoding the AC coefficients, and two oth-
ers (Tables K.3 and K.4) for encoding the DC coefficients in Annex K of
the baseline JPEG standard for reference. The users can choose any table of
their choice and store it as part of the header of the compressed file [7]. Tables
K.3 and K.5 are recommended for luminance DC differences and AC coefli-
cients. Tables K.4 and K.6 are recommended for corresponding chrominance
channels.

Let us now allocate the variable-length codes in the last example. The
codewords for (0, 0), (0, 1), (0, 3), (1, 1), (1, 2), (2, 1) and (5, 1), from Table
K.5, are 1010, 00, 100, 1100, 11011, 11100, and 1111010, respectively. VLI
codes for the nonzero AC coefficients 1, -1, 2, -5, 6, and -6 are 1, 0, 10, 010,
110, and 001, respectively. Codeword for the differential DC value is 01101.
The compressed bit-stream for the 8 x 8 block is shown below, and it requires
only 52 bits as opposed to the 512 bits required by the original 8 x 8 block
of 8-bit pixels. We have

‘01101 100001 100110 100010110111011000 11110100 111000 001 1010°,

where the first five bits “01101” represent the DC coefficient and the other 47
bits represent the AC coefficients. Therefore, we achieve approximately 10:1
compression using the baseline JPEG to compress the block.

3.11.4 Decompression process in baseline JPEG

Decompression is the inverse process to decode the compressed bit-stream, in
order to properly reconstruct the image. Block diagram of the baseline de-
compression algorithm is provided in Fig. 3.12(b). During the decompression
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Fig. 3.15 Original pepper image.

process, the system first parses the header of the compressed file in order to
retrieve all the relevant information, namely, image type, number of compo-
nents, format, quantization matrices, and the Huffman tables that were used
to compress the original image, etc.

After parsing the header information, the decompression algorithm is ap-
plied on the compressed bit-stream as shown in Fig. 3.12(b). The entropy
decoding step in Fig. 3.12(b) decodes the bit-stream of the compressed data
using the Huffman tables that were used during the compression process. The
purpose of this step is to regenerate the zig-zag ordered sequence of the quan-
tized DCT coefficients. This zig-zag sequence is then reordered by the zig-zag
reordering step to create the 8 x 8 block of quantized DCT coefficients. Each
DCT coefficient in the quantized block is inverse-quantized as

F'(u,v) = Fy(u,v) * Q(u,v), (3.20)

where Q(u,v) is the quantization step-size parameter from the same quan-
tization table that was used during the compression process. After inverse-
quantization, the DCT coefficients F'(u, v) are inverse transformed to spatial
domain data via inverse DCT (IDCT). The IDCT of an 8 x 8 block F'(u,v),
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for u,v=0,1,...,7, is defined as

7 7
f(z,y) = % 33 C)C(v)F (u,v) cos [”(211; l)u] cos [W(Zyl-é- l)v]

u=0v=0

(3.21)
forz=0,1,...,7and y=0,1,...,7.

SC=e

Fig. 3.16 Pepper image compressed with quality factor 75.

After decompression of all the MCUs from the compressed bit-stream, the
image components are reconstructed. For a gray scale image, there is only
one component and no color transformation is required. For color image,
the reconstructed Y, Cb, and Cr components are inverse-transformed to the
RGB color space. We show in color the famous Pepper image in Fig. 3.15.
When compressed, using the baseline JPEG algorithm with quality factor
Q.JPEG = 75, the reconstructed image is found to be perceptually almost
identical to the original image. This is demonstrated in Fig. 3.16. When we
compress the same image with a quality factor Q_JPEG = 10, we can see
prominent artifacts in the image as shown in Fig. 3.17. Such artifacts, caused
by lossy JPEG compression/decompression, are called blocking artifacts. This
happens because of the discontinuities created at the 8 x 8 block boundaries,
since these blocks are compressed and decompressed independently.
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Fig. 3.17 Pepper image compressed with quality factor 10.

3.11.,5 JPEG2000: Next generation still picture coding standard

Goal of the JPEG2000 [22, 23] standardization activity is to advance imaging
applications in the new era of Internet and wireless communication. This new
standard is expected to address the areas where the current JPEG standard
fails to produce the best quality or performance requirements.

The current JPEG standard for still image compression is very much suit-
able for compressing images at 0.5 bits per pixel or higher. However, the
reconstructed image quality significantly degrades at lower bit rates. Recon-
structed quality of a JPEG compressed image is unacceptable below 0.25 bits
per pixel. JPEG results in poor compression performance when applied to bi-
level images for compound documents, such as facsimile, scan, and text-type
imagery. Current JPEG standard has 44 different modes of operation, with
many of these modes being very application-specific and not widely used in
practice. As a result, the interchangeability between the different modes of
JPEG applications is a difficult proposition.

JPEG2000 is targeted for more compression efficiency in terns of compres-
sion ratio and image quality, especially at very low bit-rates (below 0.25 bits
per pixel). JPEG2000 will have a single common decompression architecture
to encompass different modes and types of applications, so that it is suitable
for greater interchange between applications encompassing different features.
The same decompression architecture will be suitable both for bi-level and
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continuous tone images, because the JPEG2000 system is capable of com-
pressing and decompressing images with various dynamic ranges between 1
to 16 bits for each color component. This standard is expected to handle new
paradigms of distributed imaging applications, especially Internet imaging.
JPEG2000 will provide an open systems approach to imaging applications.
The interesting feature of this new standard is that the same algorithm can
be used for both lossless and lossy compression of still images.

Unlike DCT in current JPEG, the JPEG2000 coding algorithm is be-
ing defined based on the principles of Discrete Wavelet Transform (DWT),
which offers multiresolution and efficient progressive encoding/decoding sys-
tem. Progressive decoding can be achieved in terms of resolution, while being
progressive in terms of visual quality from the same encoded bit-stream and
selectable during the decoding time. This capability is particularly suitable
for client-server applications such as World Wide Web and many other dis-
tributed networking environments. This is also suitable for retrieval, archival,
print, and color facsimile-type applications.

There are two types of wavelet filters to accomplish DWT in the JPEG2000
standard. One type of wavelet filters generates noninteger values for the trans-
formed coefficients, which are mainly used for lossy image compression and
cannot be used for lossless image compression. The other type of wavelet
filters generates integer-transformed coefficients, which are used mainly for
lossless compression. However, they can be used in lossy mode also, when
the transformed coefficients are quantized after wavelet transformation. In
current JPEG, the steps in lossless mode of compression are entirely differ-
ent from the lossy mode. In JPEG2000 a common algorithm is used in both
lossy and lossless modes, based on the selection of corresponding wavelet fil-
ters. JPEG2000-compressed images are very much suitable for transmission
through a noisy environment like wireless channels, because of the error re-
silience features embedded into the bit stream.

This technology will enable regions of particular interest in an image to be
encoded with greater fidelity (Region of Interest coding) compared to other
areas in the image, and it will also enable random access to the compressed
data for manipulation of the images in the compressed domain. The random
access of the code-stream will allow operations such as rotation, translation,
scaling, filtering, etc., without decompressing the whole image. The file for-
mat of JPEG2000 is expected to handle the features of metadata such as Wa-
termarking of images, Intellectual Property Rights as per the WIPO (World
Intellectual Property Organization) compliant, Content Registration, JPEG
Registration Authority, etc. The plan of this standard is to provide appro-
priate interfaces with MPEG-4, in order to insert and extract still pictures
to/from moving video and maintain corresponding Intellectual Property infor-
mation. JPEG2000 is a good candidate for usage in multimedia data mining,
because of the metadata information that can be handled using this standard.
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3.12 TEXT COMPRESSION

Text compression is inherently lossless in nature. Like image and video com-
pression, there is no standard committee devoted to define text compression
standards under the auspices of an international standard body. However,
industry adopted text compression schemes, mainly based on the principles
of text processing and string matching. We shall describe some of them here.

Dictionary-based coding techniques are particularly suitable for compress-
ing text datatypes. Typically, redundancy in text appears in the form of
common words, which repeat quite often, in addition to the statistical re-
dundancy of individual characters. In order to achieve significantly enhanced
compression performance, it is desirable to exploit both these aspects of re-
dundancy. We can handle the redundancy of frequently appearing common
words by constructing a dictionary and replacing each common word in the
text file by an indez to the dictionary. This approach is popularly known
as the dictionary-based coding scheme. The dictionary could be static or dy-
namic.

In static dictionary coding, the dictionary is fixed during both compres-
sion and decompression. The simplest example of this scheme is to express
(or encode) the words “Sunday,” “Monday,” ..., “Saturday” by the indices
1,2,...,7. A dynamic dictionary coding, however, builds a dictionary dynam-
ically using the message itself that is being encoded or decoded. The basic
idea behind most of the dynamic dictionary-based robust lossless text com-
pression schemes is to first parse the text (which can be considered as a string
of characters) into a sequence of substrings and then generate compressed
codes of these substrings. Jacob Ziv and Abraham Lempel described effi-
cient dynamic dictionary encoders, popularly known as LZ77 [24] and LZ78
[25], by replacing a group of characters of the text (phrases) with a pointer to
where they have occurred earlier in the portion of the text that has already
been encoded. Many variations of these algorithms have been developed after
that. They are collectively called the Ziv—Lempel or Lempel-Ziv (LZ) family,
namely, LZSS [26], LZW [27], LZC [28], LZWAJ [29], etc. For example, LZSS,
a variation of LZ77, is the basis of the text compression engine in popularly
used compression utilities like zip, gzip, pkzip, winzip. The LZW algorithm,
a variant of LZ78 scheme, is the core of the Unix compress utility.

There exist other categories of text compression algorithms. Some of the
popular ones include variants of a technique called Prediction by Partial
Matching (PPM) [30, 31]. PPM is a statistical compression scheme based
on context modeling of the symbols. The already encoded portion of the text
is used as context to determine the probability of the symbol being encoded.
It relies on the Arithmetic coding scheme [32] to achieve good compression
performance. Although there are a number of variations of the PPM algo-
rithm for text compression, such as PPMA, PPMB, PPMC, etc., none of them
are supported by any underlying theory. However, the PPM algorithms are
relatively slow as compared to the LZ family of algorithms.
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A comparatively recent development in context based text compression
is the block-sorting scheme based on the Burrows and Wheeler Transform
(BWT) [33]. This is analogous to transformation-based image compression
schemes. The text is first divided into a number of blocks. Each block is then
transformed into a form more amenable to compression. The transformation
is done by permuting the characters in each block, so that the characters
occurring in a similar context get aligned near each other. The permuted
block is then compressed using a suitable coder, which exploits the locality
of context of the symbols in the permuted block. During decompression, the
decoder first decodes the permuted block which is then inverse-transformed
(BWT) in order to reconstruct the original text.

3.12.1 The LZ77 algorithm

LZ77 is the first form of Ziv—Lempel coding proposed by Ziv and Lempel
in 1977 [24]. In this approach a fixed-size buffer, containing the previously
encoded character sequence that precedes the current coding position, can be
considered as a dictionary. The encoder matches the input sequence through
a sliding window, as illustrated in Fig. 3.18. The window is divided into
two parts, namely, (i) a search window that consists of the already encoded
character sequence, and (ii) a lookahead buffer that contains the character
sequence to be encoded as shown in Fig. 3.18.

In order to encode a sequence in the lookahead buffer, the search window is
scanned to find the longest match in it with a prefix of the lookahead buffer.
The match can overlap with the loockahead buffer, but obviously cannot be the
lockahead buffer itself. Once the longest match is found, it is coded as a triple
< offset,length, C(char)>, where offset is the distance of the first character of
the longest match in the search window from the lookahead buffer, length
is the length of the match, and C(char) is the binary codeword of the first
mismatching symbol char that follows the match in the lookahead buffer. The
window is shifted left by length 4+ 1 symbols to begin the next search.

3.12.1.1 Example 3-LZ77 coding: Let the character sequence to be en-
coded be given as - .- baabacbaacbedbedbeac- - . 'We assume that the size of
the search window is 8 and that of the lookahead buffer is 6. Let us assume
that the substring baabachba in the search window has already been encoded
and the substring acbedb in the lookahead buffer is to be encoded, as shown
in Fig. 3.18(a). After scanning the search window, the longest match is found
to be the substring ‘ach’ of length 3 at a distance 4 from the lookahead buffer.
The character following the prefix ‘ach’ in the lookahead buffer is ‘c’. Hence
the triple to output is < 4, 3, C(c) >, where C(c) is the codeword for the
character ¢. Since the match length is 3, we shift the window left by 4 char-
acters.
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Search Window Lookahead Buffer
7 6 5 4 3 2 N/ N
Uowal el wlalalm] o sl el o[ ] a]n]can cae.

Fig. 3.18 LZ77 coding: An example with sliding window.

Now the first character in the lookahead buffer is ‘d’ as illustrated in
Fig. 3.18(b), and there is no match for ‘d’ in the search window. Hence
we output the triple < 0,0,C(d) > and shift the sliding window by one.

The longest match in the sliding window is the substring ‘bedbc’ as depicted
in Fig. 3.18(c). It is to be noted that the matching substring starts in character
position 3 in the search window, and it overlaps with the first two characters
bedbe in the lookahead buffer. Hence we output the triple < 3,5,C(a) > and
shift the sliding window left by 6 characters to continue.

There are many variations of LZ77 coding, mainly to further improve the
performance or implementation efficiency of the scheme. Popular compression
softwares like Zip and PKZip use a variation of the LZ77 coding scheme, called
LZSS coding [26].

3.12.2 The LZ78 algorithm

LZ78 is the other key algorithm in the LZ family proposed by Ziv and Lempel
in 1978 [25]. Instead of using the previously encoded sequence of symbols {or
string) in the sliding window as the implicit dictionary, the LZ78 algorithm
explicitly builds a dictionary of string patterns dynamically in both the en-
coder and decoder. The encoder searches this dictionary to find the longest
match with the prefix of the input string and encodes it as a pair < #, C(S) >,
where i is the index of the matched substring in the dictionary and C(S) is
the codeword of the first symbol S following the matched portion of the input.
A new entry is then added to the dictionary, corresponding to the matched
substring concatenated by the symbol 5. The codeword C(S) is usually a
Huffman-type variable-length code of the source symbol S.

In order to achieve further compression, the index 7 in the output pair
can be encoded using some Huffman-type variable-length binary encoding
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by exploiting the statistics of the indices. But for the sake of simplicity of
explanation, we avoid detailed discussion here.

3.122.1 Example 4-LZ78 encoding: Let us consider the sequence of
symbols bacababbaabbabbaaacbbe. Initially the dictionary is empty. Since the
first input symbol & has no match in the dictionary, the encoder outputs the
pair < 0, C(b) > and inserts the first entry b into the dictionary with index 1
as shown in Table 3.6.

Table 3.6 Dictionary after Step 1

Encoder output | Index | Entry
<0,C(b) > 1 b

Similarly, the next input symbol a has no match in the dictionary. Hence
the encoder outputs the pair < 0,C(e) > and inserts new entry a at index 2
in the dictionary as indicated in Table 3.7.

Table 3.7 Dictionary after Step 2

Encoder output | Index | Entry
<0,C(b) > 1 b
<0,C(a) > 2 a

Because the next input symbol ¢ has no match in the dictionary, the encoder
outputs the pair < 0,C(c) > and inserts the new entry c at index 3 as shown
in Table 3.8.

Table 3.8 Dictionary after Step 3

Encoder output | Index | Entry
<0,C(b) > 1 b
<0,C(a) > 2 a
<0,C(c) > 3 c

Now the input symbol @ matches with entry 2 in the dictionary, but ab fails
to generate a match. So the encoder outputs the pair < 2, C(b) > and inserts
new entry ab at index 4 in the dictionary, as indicated in Table 3.9.
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Table 3.9 Dictionary after Step 4

Encoder output | Index | Entry
<0,C(b) > 1 b
<0,C(a) > 2 a
<0,C(c) > 3 c
<2,C(b) > 4 ab

The next two symbols ab match with entry 4 in the dictionary, but abb
does not have any match. So the encoder outputs the pair < 4,C(b) > and
inserts a new entry abb at index 5 in the dictionary, as shown in Table 3.10.

Table 3.10 Dictionary after Step 5

Encoder output | Index | Entry
< 0,C(b) > 1 b
< 0,C(a) > 2 a
<0,C(c) > 3 ¢
<2,C(b) > 4 ab
<4,C0(b) > 5 abb

Table 3.11 Final LZ78 dictionary

Encoder output | Index | Entry
< 0,C(b) > 1 b
< 0,C(a) > 2 a
<0,C(c) > 3 c
<2,C(b) > 4 ab
< 4,C(b) > 5 abb
< 2,C(a) > 6 aa
< 1,C(b) > 7 bb
< 5,C(a) > 8 abba
< 6,C(c) > 9 aac
< 7,C(c) > 10 bbe

Continuing the above procedure the encoder generates the output pairs
< 2,C(a) >, < 1,C(b) >, < 5,C(a) >, < 6,C(c) > and < 7,C(c) >, and
builds the dictionary accordingly. The final dictionary is depicted in Ta-
ble 3.11. The encoded output of the sequence is < 0,C(b) >, < 0,C(a) >,
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<0,C(c) >, <2,C(b) >, < 4,C(b) >, <2,C(a) > < 1,C(b) >, <5,C(a) >,
< 6,C(c) >, < 7,C(c) >.

3.122.2 Example 5-LZ78 decoding: We now decode the encoded data
to explain how the LZ78 decoding process works. The decoder also dynam-
ically builds a dictionary, which is the same as that built by the encoder.
Initially the dictionary contains nothing. Since the first input pair to the de-
coder is < 0,C(b) >, it first decodes the symbol b from the codeword C(b).
As the decoded index is 0, it outputs the symbol b and inserts the first entry
< 1,b > in the dictionary as shown in Table 3.6.

The next input pair to the decoder is < 0, C(a) >. As a result, the decoder
outputs the symbol a and inserts the next entry < 2,a > in the dictionary
as indicated in Table 3.7. The following input pair being < 0,C(c) >, the
decoder outputs the symbol ¢ and inserts the next entry < 3,¢ > in the
dictionary as shown in Table 3.8.

The next input pair is < 2, C(b) >, which indicates that the new output is
the pattern for entry 2 in the dictionary concatenated by the decoded symbol
b. Since entry 2 represents a, the output will be ab. A new pattern ab is now
inserted in index 4 of the dictionary.

The following input pair is < 4, C(b) >. As a result, the decoder outputs the
string abb and inserts it in the dictionary in entry 5. Analogously, the decoder
reads the next pair < 2, C(a) > and generates the output aa, inserting it in the
dictionary in entry 6. Continuing in a similar fashion, the subsequent decoder
outputs are bb, abba, aac and bbc; and these are inserted in the dictionary at
indices 7, 8, 9, and 10, respectively. The final dictionary is identical to the one
generated in Table 3.11. The final decoder output is bacababbaabbabbaaacbbe,
and it exactly matches with the original input sequence.

Generally the LZ78 algorithm is easier for implementation and less memory-
consuming, as compared to the LZ77. This is because of the simpler data
structure used in LZ78 to output sequence of pairs only, as opposed to the
triples in LZ77. There exist a number of variations of the LZ78 algorithm, the
most popular being the algorithm by Welch [27) known as the LZW algorithm.
We describe this algorithm in the following section.

3.12.3 The LZW algorithm

The inclusion of the explicit codeword C(S) of the symbol S along with the
index 4, in the output < i, C(S) > of the LZ78 encoding algorithm, is often
found to be very wasteful. The inefficiency is overcome in the LZW algorithm,
by omitting C(S) and transmitting the index ¢ only. This is accomplished by
initializing the dictionary with a list of single symbol patterns, to include
all the symbols of the source alphabet. In each step, the index of the longest
match from the input in the dictionary is output and a new pattern is inserted
in the dictionary. This new pattern is formed by concatenating the longest
match with the next character in the input stream. As a result, the last
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symbol (or character) of this new pattern is encoded as the first character of
the next one.

3.12.3.1 Example 6-LZW encoding: The LZW encoding algorithm is
explained below with an example to encode the string babacbabababcb.

Table 3.12 LZW dictionary for encoding

Index | Pattern | Derived as

1 a
2 b initial
3 c
4 ba 24+a
5 ab 1+b
6 bac 44 ¢
7 ch 3+t
8 bab 44 b
9 baba 8+a

10 abe 54¢

The dictionary generation is shown in Table 3.12. Initially, the dictionary
consists of single symbol (or character) patterns a, b, and ¢ from the input
alphabet {a, b, ¢}. The index of the patterns in the dictionary are 1, 2, and
3, respectively.

After receiving the first character b, the encoder finds the match at index
2. But the pattern ba, with the first two characters, does not have a match
in the current dictionary. Hence the encoder outputs index 2 to encode the
first character b, and inserts the new pattern ba to index 4 in the dictionary.

The second input character a has a match in the dictionary with index 1,
but ab formed by the second and third characters does not have a match. As
a result, the encoder outputs index 1 to encode a and inserts the new pattern
ab in the dictionary at index 5.

Now the next two characters be match with the pattern at index 4 in the
dictionary, but bac does not. Hence the encoder outputs index 4 to encode
ba, and it inserts the new pattern bac into the dictionary at index 6.

The following character ¢ now matches with index 3, but ¢b does not. Hence
the encoder outputs index 3 to encode ¢, and it inserts cb in the dictionary to
index 7.

The subsequent two characters ba have a match at index 4, but bab does
not. Hence the encoder outputs the index 4 to encode ba, and it inserts the
new pattern bab in the dictionary to index 8.

The next three characters bab have a match in the dictionary to index 8,
but baba does not. Hence the encoder now outputs the index 8 to encode bab,
and it inserts the new pattern baba in the dictionary at index 9.
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The following two characters ab now match with the pattern at index 5 in
the dictionary, but abc does not. Hence the encoder outputs index 5 to encode
ab, and it inserts the new pattern abc in the dictionary to index 10.

The subsequent two characters cb have a match at index 7 in the dictionary.
Hence the encoder outputs the index 7 to encode cb, and it stops. As a result,
the output of the LZW encoderis 2 14 34 8 5 7.

It should be noted that statistical probabilities of appearance of the pointers
from the LZW encoder can be further exploited by using Huffman-coding
type variable length entropy encoding schemes. This may result in further
reduction of the output data, and hence it can enhance the text compression
performance.

3.12.3.2 Example 7-LZW decoding: Here we take the same encoder
output from Example 6, and decode it using the LZW algorithm. The input
to the decoderis 2, 1, 4, 3, 4, 8, 5, 7.

Like the encoder, the decoder starts with the initial dictionary having three
entries for a, b, cand indices 1, 2, 3. After visiting the first index 2, the decoder
outputs the corresponding pattern b from the dictionary.

The next output is a, corresponding to the second input index 1. At this
point, the decoder inserts a new pattern ba in the dictionary to index 4. This
new pattern ba is formed by concatenating the first character a of the current
output pattern a at the end of the last output pattern b.

The next input index is 4, which corresponds to the pattern ba in the
dictionary. Hence the decoder outputs ba, and it inserts the new pattern
ab in the dictionary to index 5. The new pattern ab is again formed by
concatenating the first character b of the current output pattern ba at the end
of the last output pattern a.

The next input index is 3, which corresponds to ¢ in the current dictionary.
The decoder hence outputs ¢ and inserts a new pattern bac in the dictionary
to index 6. This pattern bac has been formed by concatenating ¢ at the end
of the previous output or matching pattern ba.

The next output of the decoder is ba because of the input index 4. The
decoder now inserts the new pattern cb in the dictionary to index 7. This
pattern is again formed by concatenating the first character b of the current
output ba at the end of the previous output ¢. At this point, the dictionary
has only 7 entries as shown in Table 3.13. So far the decoding process was
straightforward.

The next input to the decoder is index 8. But the dictionary does not
have any pattern at index 8. This tricky situation arises during decoding, if a
pattern has been encoded using the pattern immediately preceding it during
the encoding process. As a result, thelast character of the pattern is the same
as the first character. Hence the decoder creates the output by concatenating
the first character of the previous output with the previous output itself. Since
the previous output was ba, the decoder outputs bab in the current decoding
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Table 3.13 LZW dictionary for decoding

Index | Pattern | Derived as

1 a

2 b initial

3 c

4 ba 24

5 ab 1+b

6 bac 4+c¢

7 cb 3+b

step and inserts this new pattern in the dictionary to index 8. The following
input index 5 corresponds to the pattern ab, and hence the decoder outputs
ab and inserts the new pattern baba in the dictionary at index 9. This pattern
baba is formed by concatenating the first character a of the current output ab
at the end of the previous output bab.

The next input index 7 corresponds to the pattern cb. The decoder outputs
cb and obviously inserts the new pattern abc in the dictionary and stops. At
this point the final dictionary is exactly identical to the final dictionary that
was formed during the encoding process as shown in Table 3.12 in the previous
example.

3.12.4 Other applications of Lempel-Ziv coding

LZ coding techniques are not necessarily applicable to text compression only.
Variants of the LZ coding techniques have been found to be effective to com-
press many other datatypes. They can be effectively used to compress general-
purpose data effectively, for archival and storage. LZ coding techniques can
be applied to compress databases (both numeric and text), graphical charts,
geographical maps, and many other special kinds of images. The LZ-based
coding schemes have also been adopted in many international coding stan-
dards.

LZW-based coding has been found to be effective to losslessly compress
different kinds of images. The widely used image file format ‘GIF’ (Graphical
Interchange Format) is an implementation of the LZW algorithm. This is
very similar to the popular compress utility in UNIX. GIF is very effective in
compressing computer-generated graphical images and pseudo-color or color-
mapped images. TIFF (Tag Image File Format) is another industry standard
based on LZ coding. This is useful for compressing dithered binary images,
which simulate gray scale images through a variation of the density of black
dots. The CCITT (previously ITU-T) Recommendation V.42 bis is a com-
pression standard of data over a telephone network. The compression mode
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of this standard uses the LZW algorithm to compress data to be transmitted
through the modem.

3.13 CONCLUSIONS AND DISCUSSION

In this chapter we have introduced the fundamental principles behind multi-
media data compression. Data compression has great potential in the near
future to improve the efficiency of data mining systems, by exploiting the
benefits of compact and shorter representation of data. This is particularly
important because data mining techniques typically deal with large databases,
and data storage management is a big issue for managing such large databases.
However, the data mining community has hitherto failed to take advantage
of the knowledge in the area of data compression and develop special data
mining techniques based on the principles behind data compression. Never-
theless, there have been limited efforts at usage of data compression to reduce
the high dimensionality of multimedia datasets, with applications for min-
ing multimedia information in a limited manner. Multimedia data mining is
covered in detail in Chapter 9.

We have discussed various issues of multimedia data compression, along
with some theoretical foundations. We presented some basic source coding
algorithms, often used in data compression, in order to introduce this area
of development to the readers. We have described the principles behind the
popular algorithms for image and text type multimedia data. We avoided dis-
cussion on compression of other datatypes such as video, audio, and speech
because it is beyond the scope of this book. The advantages of data compres-
sion are manifold and will enable more multimedia applications at reduced
costs, thereby aiding its usage by a larger population, with newer applica-
tions, in the near future.
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String Matching

4.1 INTRODUCTION

Text probably got much more attention compared to other media datatypes,
in research and development for information retrieval and data mining, be-
cause of the wealth of work done in the area of searching patterns in text files
during the last three decades. This resulted in the growth of text process-
ing softwares, text information retrieval systems, digital libraries, etc. The
single most important reason for this growth is the development of numer-
ous classical algorithms and their efficient implementations in string matching
{1, 2). The results in string matching algorithms influenced the development
of text-based search engines, and these are being widely used in the World
Wide Web.

Text mining is becoming a very practical and important area of develop-
ment. Given the practical importance of classification and search of patterns
in large collection of text data in the Internet, newswire, electronic media,
digital library, large textual databases, and their ability to generate knowl-
edge from these vast resources, the development in the area of text mining
continues to increase. Development of string matching algorithms also influ-
enced the areas of computational biology, and molecular biology, along with
the success of the Human Genome Project. String matching algorithms have
been used in DNA search, DNA sequencing, and many other problems in
Bioinformatics as well. In our judgment, understanding of the principles in
string matching is important for further development in data mining and its
applications in multimedia as well as Bioinformatics.

143



144 STRING MATCHING

The remaining part of this section introduces the preliminaries of string
matching. Classical linear order string matching algorithms are described in
Section 4.2. The use of string matching in Bioinformatics is highlighted in
Section 4.3. Issues in approximate string matching are dealt with in Sec-
tion 4.4. Compressed string matching is considered in Section 4.5. Finally,
Section 4.6 concludes the chapter.

4.1.1 Some definitions and preliminaries

Before we proceed to detailed algorithmic description, it is essential to prepare
the readers with some basic definitions.

Alphabet: Symbols, or characters, are considered to be the basic el-
emental building blocks in string matching. An alphabet is a specific set of
symbols. It is usually a finite set. For instance, ¥ = {a, b, ¢, d, e} is an
alphabet containing symbols a, b, ¢, d, and e.

String: A string is a sequence of instances of symbols, or characters, over
a finite alphabet ¥. For instance, both ‘baacbcba’ and ‘adaeabedeed’
are strings over the alphabet ¥ = {q, b, ¢, d, e}.

The length of a string s, say, is the number of instances of the symbols or
characters in the string. The string s may be expressed as s = s182 " Sm,
where each s; is an instance of a symbol, or character, from the alphabet and
m is the length of the string s. Often length of the string is represented as
ls|- An empty string, ¢, is a special string with length 0. The concatenation
of two strings © = 2122 ---Zp and y = Y12 - - * Yq, denoted by zy, is equal to
the string £1%2 - - - Zp1n¥2 - - - Yq- The length of zy is p + ¢, where p and g are
the lengths of strings  and y, respectively. As an example, the concatena-
tion of two string ‘straight’ and ‘forward’is ‘straightforward’. The
concatenation of the empty string ¢ with any string is that string itself.

Substring: A string z = z1x3 - - T is a substring of another string
Y = Y1Y2¥3 " * - Yn, if and only if there exists an 3,0 < i < mn,sothaty;1 ;1 = ;5
forj=1,2,...,k.

As an example, the string ‘bad is a substring of a string ‘dabadaba’.
Hence the substring of a string can be formed by deleting zero or more char-
acters from the beginning and/or end of the string. The empty string is a
special substring of any string, and hence it is the shortest length substring
of any string. The longest substring of a string is the string itself.

Suffix: The suffiz of a string s is a substring formed by deleting zero or
more characters from the beginning of s. Hence y is a suffix of string s, if there
exists a substring x such that s = £y. In other words, suffix of s = 8182+ 8
is any substring s,_;Sp—j4+1--* S, where 0 < j < n. The empty string ¢ is
the shortest suffix and the string itself is the longest suffix of any string. Any
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suffix other than the empty string and the string itself is called a proper suf-
fix. As an example, ‘01!’ is the proper suffix of a string ‘¢urmoil’. This is
pictorially depicted in Fig. 4.1(a).

Suffix
|
swing: (ALl
~ Prefix
String:lhiulm]alnl’t!yl ®)

String: [ h|u|m[aln]s [¢ [y] ©

Laln|m[a]n] Prefix
I

St

Fig. 4.1 Examples of (a) suffix, (b) prefix, and (c) suffix of prefix of a string.

Prefix: The prefiz of a string s is a substring formed by deleting zero or
more characters from the end of s.

Hence z is a prefix of s if there exist a substring ¥ so that s = ry. In other
words, prefix of s = 8,89 --- s,, is any substring s;s5 - - s, where 0 < k < n.
The empty string ¢ is the shortest prefix and the string itself is the longest
prefix of any string. Any prefix other than the empty string and the string
itself is called a proper prefir. As an example, ‘human’ is the proper prefix
of the string “humanity.” This is pictorially depicted in Fig. 4.1(b).

It is interesting to note that the substring ‘man’ is a suffix of a prefix of
the string “humanity,” as pictorially depicted in Fig. 4.1(c).

Factor: A string y is a factor of a string s if s can be represented as
s = £y 2, where x and y are the prefix and suffix of s. The substring ‘man’
is a factor of the string ‘humanity’. In other words, a factor of a string is
a suffiz of a prefiz or prefix of a suffiz of a string.
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4.1.2 String matching problem

String matching essentially is the technique of finding the occurrence of a
particular string, called a pattern, in another string called the text. The
String matching problem can be formulated as follows.

Let us assume that a pattern p = pips---p,. of length m and a text
t = t1t, - - - t,, of length n are two strings formed over the same finite alphabet
¥ such that m < n. We say that the pattern p occurs in text ¢ at the begin-
ning of text location k if 1 <k <n—m and txy;—1 =p; for 1 <i < m. The
string matching problem is the problem of finding all the text locations where
the given pattern p occurs in the given text ¢. The string matching problem
has been depicted pictorially in Fig. 4.2.

2={ab,c}
Pattern (p): [b]a]b]a]

Positon: 1 2 3 4 5§ 6 7 8 9 1011 12 13 14 1516 17
Tm(z):| c|b|b|a b|a|b| a] albLaIbIaIc[aIblaI

Match at > i L Match at

Position 3 | b | ‘l l'l 'l Position 10
Match at J

Position 5

Fig. 4.2 The string matching problem.

Example 1: Let us assume a text string t = ‘cbbababaababacaba’
and a pattern p = ‘baba’ over the finite alphabet ¥ = {a,b,c} as shown in
Fig. 4.2. The pattern ‘baba’ occurs in text locations 3, 5, and 10, respec-
tively. Note that locations 3 and 5 overlap each other. A valid string matching
algorithm should be able to recognize such overlapping occurrences as well.
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There are different interesting variations of the string matching problem.
In many applications, the search pattern may not be a simple sequence of
characters or symbols. It could be fully or partially specified. If all the
symbols or characters p; for 1 < i < m in the pattern p = p;p; - - pm are
definitely known, the pattern is called a fully specified pattern. If one or more
symbol p; for any 1 < j < m in the pattern is not specifically known, the
pattern can be called a partially specified pattern. An unspecified symbol in
the pattern can be denoted by a “don’t care” or a “wild card” character.

As an example, let us assume an alphabet £ = {A, B, C, D}. A pattern
P =*'BCC(C A’ is fully specified. However a pattern P = BC * A is partially
specified because the third symbol * in P is not known. If x can be any of the
symbols from the alphabet X, the occurrence of pattern P could be the occur-
rence of any one of the possible patterns ‘BCAA’,‘BCBA’,'‘BCC A’, and
‘BC D A’. This unspecified symbol * in P is call the fized length don’t care
(FLDC) character. However if the pattern P consists of a don’t care character
¢ which can be any substring {8, $3, $88, ...} of any arbitrary length, then
the don’t care character ¢ is called the variable length don’t care (VLDC) char-
acter. As an example, let us assume that the partially specified pattern is P
=‘BC ¢ A’. Since ¢ can contain any pattern from the infinite set of substrings
{8, 88, 888, ...}, the possible occurrences of the pattern in the text will be any
matched substring beginning with the prefix ‘B A’ and ending with the suffix
A - for example, ‘BCA’, ‘BCAAAA,‘BCABCBDBCDDBA, etc.
Partially specified pattern matching is useful in searching for text information
when the pattern is partially known.

The pattern may also consist of a finite set of sequences instead of just a
single string. Here the pattern matching problem can be extended to search
for occurrence(s) of any one of the members of the set in the text, while
reading the text once only. The patterns of interest may contain wild cards as
explained above. They may also contain regular expressions. Use of regular
expressions in patterns can be very powerful, because a set of search patterns
can be expressed by using a regular expression in the form of a simple string
as well as concatenations, unions, and repetitions of other subexpressions.
Obviously, the algorithms to solve such problems are very complex, and they
still remain a challenge in computer science.

The matching criteria can also vary by permitting slight limited difference
between a pattern and its occurrences in the text. This type of pattern match-
ing is popularly known as approzimate matching and is particularly useful in
information retrieval, text processing, and molecular and computational bi-
ology. Approximate matching is a powerful tool in automatic detection of
spelling errors in texts, distance measures in DNA analysis, DNA sequence
and matching, etc. The progress in simple and approximate string matching
may have significant influence in text mining and Bioinformatics as well.
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Iglblbla [blalbjajalblajbiajcla|b]a]
1
[clblbla [b|a[blafalblalblalcla[b]a]
2
[c[b[bla [b[a[blajajblalblajc[a[b]a]
;

{c/b[bla [bfa]blajalbla[blalcla[b]a]

4
[c[blba [bfa[blajabla[blajcla]b]a]
s ——{bTalbfa]
[clblbla [bla[blajalba[bla[cla]b]a]
o ——BTalbla]

Fig. 4.3 Example of brute force approach to string matching.

4.1.3 Brute force string matching

In a brute force approach, the string matching algorithm compares a pat-
tern character by character in each and every location of the text. Starting
at the beginning of the text string, we compare the characters of the pat-
tern one after another with the corresponding characters in the text, until
a mismatch is found or the complete pattern is exhausted. If the pattern is
exhausted, we claim to have found a match at the beginning of the text. If
a mismatch of character is detected before the pattern is exhausted, then the
pattern does not occur at the beginning of the text. We start the matching all
over again at the next character in the text, and continue the same procedure.

Example 2: We illustrate how the brute force pattern matching algorithm
finds occurrences of a pattern ‘baba’ in a text ‘cbbababaababacaba’ in
Fig. 4.3. The algorithm starts by comparing the first character “b” of the
pattern with the first character ‘c’ of the text string. The broken line con-
necting them shows that these two characters don’t match. Hence the pattern
gets shifted to the second character location in the text, in order to start the
pattern comparison all over again from the second character location in the
string. In the second step, the first character “b” of the pattern is compared
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with the second character ‘4’ of the text. Since they are the same, this is
shown by connecting them with a solid line. Now the second character of the
pattern “a” is compared with the next character ‘0’ in the text, and they are
shown to be connected by a broken line as they mismatch in this location.
Hence the pattern matching starts all over again at text character location
3 now. We can see that all the four consecutive characters ‘v’, ‘a’, ‘b’ and
‘a’ in pattern p are now matched with the consecutive four character in the
text starting in location 3, and they are shown to be connected by solid lines.
Hereby we have found the first occurrence of the pattern in the text at lo-
cation 3. The pattern is now shified to restart the matching process from
text character location 4. The first character “b” does not match with the
character ‘a’ in location 4, and hence the pattern is shifted to location 5. Here
we find that the pattern ‘ba ba’ matches with the consecutive four characters
in the text starting in location 5 and hence determines an occurrence of the
pattern in location 5 of the text. Continuing in the same manner, the other
occurrences of the pattern is obtained at text character location 10, as shown
in Fig. 4.3. We now formally describe the brute force algorithm for pattern
matching.

BRUTE-FORCE-STRING-MATCHING (p, t)
1. Compute pattern length, m — |p|;
. Compute text length, n « jt|;

2

3. Initialize text pointer, s «— 1;

4. Initialize pattern pointer, 1 « 1;
5

. if p; = ts4; (i.e., ith character in pattern matches with (s+4)th character
in text) then increment pattern pointer, 7 « i + 1,
else go to step T;

6. if (¢ < m) then go to step 5;

7. if i > m (i.e., search is successful) then print “Pattern occurs at text
position” s;

8. Increment text pointer, s — s+ 1 for next search;

9. if s <n-m+1 (ie., the text is not exhausted) then go to step 4 to
repeat above.

The above brute force approach requires the input text string to be buffered,
because the text needs to be backtracked whenever there is an unsuccessful
match with a symbol in the pattern. The computational complexity of the
algorithm is O(m * n) in the worst case. However, there are efficient algo-
rithms for string matching, which take only a linear order of computational
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complexity O(m + n) in the worst case. Moreover, there is no need of buffer-
ing, because these algorithms do not backtrack in the event of occurrence of
a mismatch in a pattern symbol.

4.2 LINEAR-ORDER STRING MATCHING ALGORITHMS

String matching algorithms with linear-order computational complexity are
very useful in many practical text-based applications such as edit, search and
retrieval of text, and development of search engine, and therein lies its possi-
ble influence in text data mining. In this section, we first discuss a practical
approach of developing a linear-order string matching algorithm with finite
automata, in order to avoid the problem of buffering due to backtracking in
the text itself. This definition of finite automaton and its property of not
backtracking when there is a mismatch has influenced the development of the
Knuth-Morris-Pratt algorithm [1] in 1977 as the first linear-order algorithm
with computational complexity O(m + n). This was followed by flurries of
activity in the computer science community to develop efficient linear-order
algorithms for string matching, along with exploration of simple implementa-
tion of them. In the remaining part of this section, we describe some of the
classical linear order algorithms that established the foundation of research
and development in string matching. These include the Boyer-Moore [2],
Boyer-Moore-Horspool [3], and Karp-Rabin [4, 5} algorithms.

4.2.1 String matching with finite automata

Finite automata has been used as a tool in string matching. For every pattern
p, we can always build a finile automaton, which we call a string-matching
automaton for the corresponding pattern. The string-matching automaton is
built from the pattern as a preprocessing step before matching. The text is
then scanned through the automaton to find occurrences of the pattern in the
text. A finite automaton M can be considered as a 5-tuple (Q, go, S, L, 9),
where

o @ is a finite set of states of the automaton,

e ¢o € Q is a special state called the start state,

e S C Q@ is a distinguished set of states called the stop states,
e ¥ is the finite input alphabet, and

e 4 is a function from @ x X into @, called the transition function of the
automaton M.

To understand string matching with finite automata, it is not necessary
for readers to have a complete understanding of the automata theory. The
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State [ g b

0 [1]0/  Pposition: 123456 78 91011

; ; : Text: abbabababaa

3 [1T2] Statee 012012323201
(b) (c)

Fig. 44 Finite automata: (a) state diagram, (b) state transition table, and {c) pattern
matching example.

automaton M always begins at the start state go and reads the characters
of the string sequentially one at a time. If the automaton M is in a state ¢;
and reads a character or symbol ¢ € I, it makes a transition from state ¢;
to another state, say g;, and we denote the transition as g; = 6(¢;, o). If the
state g; € S, we say that the automaton M has accepted the string scanned
so far. The finite automaton can be represented by a state-transition diagram
as shown in Fig. 4.4(a). We explain the finite state diagram for a pattern
‘aba’ with three types of nodes as follows:

e A start node. This represents the start state go of M. In Fig. 4.4(a),
state 0 is the start state.

o A stop node. In simple string matching there is only one stop node and
the machine transits to this state when a valid occurrence of the pattern
appears in the string. In Fig. 4.4(a), state 3 represents the stop state.
This is specially indicated by the shaded node in Fig. 4.4(a).

e Finite number of internal or read nodes. These are the nodes repre-
senting the states of the machine other than the start or stop nodes.
The machine reads only one character or symbol of the string in each of
these nodes.
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Example 3: We illustrate an example of string matching with finite
automaton in Fig. 4.4. In this example, we assume that the pattern is p =
“aba” and the text to be searched is t = ‘abbabababaa’ over the alphabet
¥ = {a, b}. State diagram of the finite automaton is shown in Fig. 4.4(a) with
four states @ = {0, 1, 2, 3} of which go = 0 is the start state and S = 3 is the
stop state. The state transition function 4 is explained through the tabular
representation in Fig. 4.4(b). The text and the corresponding state of the
automaton, after it scans each character of the text, is shown in Fig. 4.4(c). As
indicated in Fig. 4.4(c), there are three occurrences of the pattern p = “aba”
in the text ¢ = ‘abbabababa a’ because the automaton goes to the stop state
at character positions 6, 8, and 10 in the text. Since the pattern length is 3, the
matched locations of the pattern in the text correspond to character positions
4, 6 and 8 respectively The matched patterns in the string are marked by two
underlines and one overline in the text of Fig. 4.4(c).

4.2.1.1 Computational complexity: Once the state diagram (or the state tran-
sition table) of the finite automaton of a pattern is constructed, we can scan
the text to search for the pattern by comparing each text character only once,
not requiring any backtrack when there is a mismatch. Hence we can find all
the occurrences of the pattern in the text of length n in O{n) time. This is a
major improvement as compared to the naive brute force approach to pattern
matching of Section 4.1.3. However, there is an overhead for preprocessing
the pattern in terms of time and space complexity in order to (a) construct
the state diagram or the state transition table for the pattern and (b) store
the table in the memory for pattern matching. The state transition table
contains m entries for a pattern of length m and for each of the symbol in
the alphabet £. As a result, the preprocessing requires O(m * |I|) time to
construct the state transition table. Hence total computational complexity for
string matching using the finite automaton becomes O(n+mx|Z|). However,
m is usually much smaller compared to n. Therefore for small alphabet ¥ the
computational complexity, on the average, becomes linear in order.

4.2.2 Knuth—Morris—Pratt algorithm

The linear-order O(m + n) algorithm proposed by Knuth, Morris, and Pratt
[1] is the oldest and one of the most popular classical algorithms for string
matching. The fundamental idea behind this algorithm is to avoid back-
tracking on the text when a mismatch occurs, by exploiting the knowledge of
the matched substring in the text prior to the mismatch. During the search
process, all the characters in the text are read forward sequentially one af-
ter another. Unlike constructing the state transition table by preprocessing
the pattern in O(m]|X|) time, as in the finite automata based technique, the
Knuth-Morris—Pratt algorithm first creates an auxiliary table Nezt with m
entries in O(m) time by analyzing the pattern p. This Next table is then used
to shift the text forward by Next(i) characters in the event of a mismatch at
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the ith character in the pattern in O(n) time, where Next({) is the ith entry
in this table. Hence the overall complexity of the algorithm is O(m + n). We
have explained this through a diagram in Fig. 4.5.

Text (1): |c|b[b| a‘bla[bl b| a| b a| b alcla‘b|a|

Pattern (p): |b|a|b| Iblel a|
o

& (a)

rest 9: (o[ 5[ W[a[b[a[o [ & a ¥[a[ o[ e[ e[ [0[4

Partern (p): -h]alb a]blclil
L (b

[»]a]b]
(c)

Fig. 45 Generation of the Next table. (a) First k characters of p matches with the
text, (b) p is shifted by k — ¢ positions right, because (c) first 7 characters of p is also
suffix of the first k matched characters.

As described in Fig. 4.5(a), if there is a mismatch at the jth symbol of the
text with the (k+ 1)th symbol (pr41) of the pattern p = p1p> - - - p,, then the
prefix p;ps - - - pi is the same as the substring ¢; _xt;_x41---¢;_; in the text,
which is same as the suffix of the text matched so far. Hence we can decide
how much the text needs to be shifted forward in the event of a mismatch,
by observing the already-matched portion of the pattern only. This shift is
dependent on the structure of the pattern and the position of mismatch in the
pattern. Therefore the Next table is independent of the text, and it can be
generated by analyzing the pattern itself before scanning the text. In order
to determine the kth entry in the Next table, we just need to find the longest
overlap of a proper prefix of pattern p with a suffix of the already-matched
portion of the pattern p as shown in Fig. 4.5(c). Precisely,

Next(k) =max{i: i <k and prp2- - Pi = Pr—i+1Pk—i+2- Pk}  (4.1)

To reiterate, the value of Nezt(k) is the maximum ¢ < k, such that the
prefix pip2 - - p; of the pattern p = pyps - - - py is a suffix pypo - - - pr—1, that
is, p1p2 - - Pi = Pr—i+1" - Pk—1. The value Next(k) is assigned to be 1 if such
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lafblc]d]alhb clx 8 Next{8) = 4 Next(8) = 4

Fig. 4.6 Generation of the Nezt table for pattern p = “abcdabez.”

a prefix does not exist, indicating a prefix that is an empty string ¢ only.
To compute Next(k), the pattern pips - --pr—1 is overlapped with itself by
sliding one copy of itself over another, character by character from left to
right, until all the overlapping characters match or there is none left to slide.
The overlapping substring then defines the desired prefix, and Next(k) is the
length of the overlapping prefix plus 1. We demonstrate this with an example
in Fig. 4.6 to compute the Next table for the pattern p = “abcdabez.”

The Neat value for the first character of the pattern is always 0 because
there is no mismatching substring prior to the first character. In Fig. 4.6,
we show the pattern overlapped with itself. The left-hand side of the vertical
line shows the substring pi1p2 - - - p;—; as well as the overlapping of the longest
prefix of this substring with its suffix, for the computation of Nezt(j). For j
= 2, 3, 4, and 5, the overlap length is 0 because only the empty string ¢ can be
the longest prefix, which is also a suffix of all the substrings ‘a’, ‘ad’, ‘abc’,
and ‘abed’, respectively, as shown in Fig. 4.6. Hence the initial values of
Nezxt(2), Next(3), Next(4) and Next(5) are 1’s. For j = 6, ‘a’ is the longest
prefix that is also a suffix of the substring ‘abcda’. Since the overlap length
is 1, the value of Next(6) becomes 2. For j = 7, the longest prefix of the
substring ‘abcdab’ is ‘ab’, that is also a suffix of ‘abecdab’. Now the value
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of Next(7) is 3, because the overlap length is 2. Similarly ‘abc’ is the longest
prefix and also a suffix of the substring ‘abcdabc’ for j = 8, and accordingly
the value of Next(8) is 4.

These Next(j) values can be considered during the string matching in the
event of a mismatch of the jth character of a pattern with the ith character
of the text, and accordingly the pattern is shifted so that the next character
in the text after mismatching ¢;; can now be aligned with pyezs(j)+1 in the
pattern to continue the forward matching without backtracking,.

We may further improve the Next table by considering the actual symbol
causing a mismatch. Let us consider the above example with the initial Next
table as shown in Fig. 4.6. If there is a mismatch between a text character
t; and pattern symbol p; (i.e., the second ‘¢’ in the pattern), then the next
comparison is done between the same ¢; and p3 (= Pnest(r)). However, the
comparison will fail again because p3 is also the same character ‘¢’ and will
shift the comparison to p; as Next(3) = 1. Hence we can further improve the
Next table by taking the actual symbol causing the mismatch into considera-
tion. The modified Next(k) (final value) is expressed as

Nezxt(k) =max{i: i <k and p1ps-: pi = Pr—i+1Pk—i+2 - Pk and z; zé-’vl)c}
4.2

Using this definition, the final values of the new Next table are computed as
shown in Fig. 4.6. For example, the initial value of Next(5) is 1. However,
ps = p1 = ‘a’, and hence we replace the initial value of Next(5) by the value
of Next(1) that is 0. Similarly, initial value of Next(6) is 2. Since ps = p2
= ‘b’ and ps # P1 (=PNext(2)), the final value of Next(6) is 1. Iterating this
procedure for all the entries in the Next table, we generate the final values of
Nexzt as depicted in Fig. 4.6. The formal algorithm to generate the Next table
is shown below.

GENERATE-NEXT-TABLE (p)

1. Initialize pattern pointer, j « 1;
. Initialize overlap length of the patterns, k «— 0;
. Initialize Next table, Next(1) «— 0 (special value for mismatch at p,);
. while (k > 0 and p; # px) do k « Nexi(k);

. Increment pattern pointer, j — j + 1;

. if (p; = pr) then Nezt(j) — Next(k) else Next(j) — k;

2
3
4
5
6. Increment overlap length, k — & + 1;
7
8. if (j < m) then go to step 4;

9

. Stop.
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The string matching algorithm using the above Next table is described be-
low.

KNUTH-MORRIS-PRATT-STRING-MATCHING (p, ¢, Next)

[

. Initialize the pattern index, j — 1;
. Initialize the text index, k «— 1;
. Set length of the pattern, m « |p|;

. Set length of the text, n « |¢|;

Qe W N

. while j > 0 and p; # t; (i.e., there is a mismatch) do
shift pattern pointer (j — Nezxt(j));

[=2]

. Advance text pointer, 7 «— i + 1;
7. Advance pattern pointer, j « j + 1;

8. if j > m (i.e., match is successful) then
print “pattern occurs at text index” i —m
else shift pattern pointer, j «— Next(j).

9. if i < n and j < m (i.e., matching is not complete) then
go to step 5 to continue pattern matching
else Stop.

Example 4: An example of pattern matching with the Knuth—-Morris—
Pratt algorithm is shown in Fig. 4.7. We consider finding the occurrences of
a pattern p = “babad” in a text t = ‘abababababaabababa’. First we
compute the next table {0, 1, 0, 1, 3] for the pattern p = “babab” as shown
in Fig. 4.7(a). Matching details are depicted in Fig. 4.7(b). The indices ¢ and
J represent, respectively, the character positions in text and the pattern being
matched. The symbol “y” for ¢; = p; represents a match of the text character
t; with the corresponding pattern character p;. The symbol “Y” indicates
occurrence of the pattern p ending at the text position i shown by a circle.
The symbol “N” represents mismatch of ¢; and corresponding p;. Whenever
the result of comparison t; = p; is either Y or N, j is replaced by Nezt(j).
For i = 1 and j = 1 in the figure, we witness the first mismatch. This is
indicated by the symbol “N” and hence the value of j = 1 is replaced by
Jj = Nezt(1) = 0. Both i and j are incremented and the characters p; and t;
are compared, until there is a mismatch or occurrence of the end of the pattern
in the text. We witness the end of occurrence of the pattern at ¢ = 6 and hence
the text location 2 is marked by a down arrow (|) to indicate the beginning of
the first occurrence of the pattern in the text. Similarly, the pattern occurs in
the text beginning at indices 4, 6 and ending at indices 8 and 10, respectively.
At i = 12, the text character ¢;2 doesn’t match with the corresponding pattern



LINEAR-ORDER STRING MATCHING ALGORITHMS 157

character ps, and hence j = 5 is replaced by Next(5) = 3. Again ¢;5 doesn’t
match with pz and hence j is replaced by Nezt(3) = 0 again. Both i and j are
incremented and matching continues forward. The next pattern occurrence
is obtained after we find the character match at i = 17, and hence the match
occurs beginning at 7 = 13.

4.2.2.1 Computational complexity: The computational complexity of Knuth—
Morris—Pratt algorithm is Q(n) in both the worst and average cases for the
pattern matching phase. By analyzing the matching algorithm, it can be
shown that the assignment 7 — Next(j) in step 5 never exceeds the total exe-
cution of the increment operation i «— i+1 in step 6. The pattern is therefore
shifted to the right for a total of at most n times, and hence the computation
complexity of the matching phase is O(n). Similarly, we can show that the
processing time for initialization of the Nexzt table is of the same order O(m).
As a result, the worst case overall computational complexity of the algorithm
is O(m + n). The worst case computation time happens when a Fibonacci
string pattern is matched in a text.

) Initial next table Final next table
Overlap length: =0 | B [a b [x]B] Next(1)=0 Next(1)=0
bla alb Next(2) =1 Next(2)=1
k=0 blajih -}h] Next(3) =1 Next(3)=0 (a)
Ikll L HESR
k=1 blafbfafn] Next(d)=2 Next(d) =1
[l[l bialh
k=2 |blafn]a]n] Next(5) =3 Next(5)=3
[bfafnfaln
v Ji 12345

Pattern: babab
nexttable: [0, 1,0, 1, 3]

! } } }
Text: abababababaabababa

i: 1234 5(0)7(® 9@ni2131415 1601918

J 1123 454 5 45 451 23 454 03)
t=p, : Nyyy 3yYy YyYyNy5yyy3 Yy
J=Next(}): o 3 3 3 30 3

Fig. 4.7 Example of Knuth-Morris—Pratt pattern matching algorithm with pattern
p= “babab” and text t = ‘abababababaabababa’.
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4.2.3 Boyer—-Moore algorithm

Boyer and Moore proposed their algorithm for string matching [2] around the
same time that Knuth, Morris, and Pratt came out with theirs, in 1977. Both
the algorithms became historically famous in the research and development
of string matching, mainly because of their application to text processing.
Although the computational complexity of both the algorithms is on the av-
erage linear, but Boyer-Moore algorithm is likely to be more efficient than
the Knuth-Morris—Pratt algorithm for a relatively longer pattern p and rea-
sonably large alphabet X.

The key insight of the Boyer—Moore algorithm is that some of the characters
in the text can be skipped entirely without comparing them with the pattern,
because it can be shown that they can never contribute to an occurrence of the
pattern in the text. In Boyer-Moore algorithm, although the text is scanned
left to right, comparisons of the pattern and the text are done backwards right
to left along the search window while reading the longest suffix of the search
window that is also a suffix of the pattern.

The first comparison is made between the last pattern character p,, and the
text character t,,, where m is the length of the pattern p. If p,, mismatches
with ¢,, and the character t,,, does not at all appear in pattern p, then it is a
wastage in comparing the first m — 1 characters of the pattern with the first
m—1 characters of the text since the pattern cannot occur in any of the first m
positions of the text. As a result, the pattern can be shifted safely m places to
the right so that the next comparison happens between p,, and ts,,. Consider
searching for a pattern, say “ababz”, in a text which does not contain the
character ‘2’ in any of its positions. The total number of comparisons in
the text will then be only ¢ instead of n. This is a significant performance
improvement as compared to prefix comparison-based string matching, such
as Knuth—Morris-Pratt or the finite automaton-based algorithms.

In general, if p,, does not match with t; and ¢; does not appear in the
pattern p = p1ps - - - pm, then we simply ignore comparing all the previous
m — 1 text characters and shift the pattern m places to the right of ¢; in the
text. This is illustrated with an example in Fig. 4.8(a} for a pattern “bcba b”
of length five, aligned with the text beginning at index 12. Here p; = ‘v’
does not match with ¢ = ‘d’ and ‘d’ does not appear in any position of the
pattern ‘bcbab’. Hence the pattern is shifted right by five places and aligned
with the text beginning at index 17, as shown in Fig. 4.8(b), such that further
comparison resumes from this location.

On the other hand, if p,,, # ¢; and ¢; does appear in the pattern such that
the rightmost appearance of ¢; in pattern is p,,- ;, then the pattern can safely
be shifted by j places to the right of ¢; in the text in order to align p,,_; with
t;. Thereafter, comparison of p,, starts again with ¢;, ;. As an example, p,, =
ps = ‘b’ does not match with ¢; = £2; = ‘¢’ as shown in Fig. 4.8(b). However,
‘c’ appears in the pattern and its rightmost appearance is p,,_; = p2 = ‘c’.
Hence the pattern ‘bcbab’ is shifted right by 7 = 3 places in order to align
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Index: 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 126...

Text: --peejeja|blbfajd{blajblafc[b[d]a]-] ]
(a) (blc|blalb

(b) (blcibialb

(c)

Fig. 4.8 Example of skipping character comparisons in Boyer-Moore algorithm for
pattern matching. (a) Current pattern position, (b) pattern completely shifted right
because ‘d’ does not appear in the pattern, (c) pattern is shifted by three positions to
align with character ‘c’.

p2 = ‘¢’ with t3; = ‘c’, as indicated by the curved arrow in Fig. 4.8(c), and
further comparison of ps resumes with text character t;; = to4.

If a match is found between p,, and ¢t;, then the preceding characters in
the text from ¢; are compared sequentially right to left with the corresponding
positions in the pattern until there is a mismatch or the pattern is completely
matched. If the pattern gets completely matched, this implies that the pattern
occurs at location i. Hence the pattern is shifted by one place to the right,
and the matching procedure resumes.

The number of positions to slide forward, upon mismatch, depends on the
character t; being matched with the rightmost character p,, of the pattern.
These numbers can be stored in an array or table, say skip with |Z| entries
in the table, where ¥ is the alphabet over the text and the pattern. The
entry for a symbol ¢ € ¥ in the skip table is skip(c) = m — j when p; is the
rightmost occurrence of ¢ in pattern p, and skip(c) = m if o does not appear
in the pattern at all. Hence we can compute the skip table using the following
algorithm.
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GENERATE-SKIP-TABLE(Z, p)

Set pattern length, m « |p|;

Initialize skip table, skip{a) = m for all symbols o € T;
Initialize pattern index, j « 1;

for jth character p; in the pattern, set skip(p;) « m — j;
Increment pattern index, j «— j + 1;

if j < m (i.e., the pattern is not complete) then go to step 4;

IR A o A o

Stop.

The nature of shift of the pattern has been explained with an example in
Fig. 4.9 to find the occurrences of the pattern string ‘match’ in the text string
‘one of them matches and others mismatch from’. The procedure requires only
19 character comparisons, as opposed to 44 or more comparisons by Knuth—
Morris-Pratt or the finite automaton-based string matching algorithms.

When a match is found between p,, and t;, subsequent comparisons are
made with preceding characters in the text from ¢; sequentially right-to-left
with the corresponding positions in the pattern. If a mismatch is found at
p; (i-e., pj # ti—m+;), then the suffix u = pj1pj42- - pm of length m — j of
the pattern is said to match with the text substring v = t;i_mijr1- 8. If
the rightmost occurrence of the mismatching character t;_,,; in the pattern
i8S pm—k, then the pattern is then shifted by k positions right from the mis-
matching position in the text to align pp,—x with ¢;_n+; and the matching
procedure resumes further. However, the shift will be only one position right
if < m — k, in order to avoid negative shift to align py 5 with £;_m ;.

It is also possible that a greater shift is obtained, as compared to the above
case, when a mismatch occurs after a partial match of a substring. The idea is
to find a suffix v = p;1pj12 - - Pm, Occurring in another pattern, as a factor
of p. Then the pattern can be shifted safely forward to the right, so that
U = ti_m+4j+1- -+t in the text matches with the next occurrence of « in the
pattern. If no such factor exists in the pattern, we cannot safely move the
whole pattern right to the mismatching character. In this case, the algorithm
computes the longest prefix v of p that is also a proper suffix of u. The pattern
is then shifted by m — |v| positions to align with v in the text. The possible
shift can be precomputed from the pattern itself and stored in an array or
‘shift’ table.

During the search stage, the shift for mismatch at pattern location p; and
mismatching text character ¢; is chosen as max{skip(t;), shift(j)}.

The Boyer—-Moore search algorithm has worst-case computational complex-
ity of the order O(m * n). However, it is sublinear on the average case. Many
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The pattern “match” is

Aligned with character
¢’ in the text
The pattern “match” is siiatel
Aligned with character match
' in the text match
l11mattc h |
matc i
matc ] H
match i | |
atc ; : i :
match |! i ' i
match l? i : : :
match 1l 1
v % + v voo® v ey N
€ C

one of them matches and others mismatch from .....

] ]

M
patrem
occurrence
@

Pmﬂ?ﬂ
occurrence

Fig. 49 Example of Boyer-Moore pattern matching.

variations of Boyer—-Moore idea have been proposed to define worst-case algo-
rithms of linear order [2]. Although it theoretically provides high-performance,
the Boyer—-Moore (as well as Knuth-Morris~Pratt) algorithm requires com-
plicated preprocessing of the pattern before beginning the actual search of
occurrences of the pattern in the string. Hence the Boyer-Moore algorithm,
in spite of its promise of sublinear performance on the average, has not been
used in many applications in its original form.

Horspool was the first to propose a very simplified version of the Boyer—
Moore algorithm [3], by dispensing the processing and use of the shift array
all together. It uses a variation of the original skip array omly, and it en-
sures linear-order computational complexity on the average as well. This is
popularly known as the Boyer—Moore—-Horspool algorithm for string matching.

4.2.4 Boyer—Moore—Horspool algorithm

In the Boyer-Moore-Horspool algorithm [3], we compare the text character ¢;
with the last character p,, of the pattern. If they match, then we compare the
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preceding characters of the text with corresponding characters in the pattern
sequentially right to left, until we detect either an occurrence of the pattern
or a mismatch on a text character. Irrespective of the match, we slide the
pattern according to the next occurrence of the character ¢; in the pattern.
The number of positions to be moved is determined by the value of skip(t;).

Computation of the skip table in the Boyer-Moore-Horspool algorithm
has a subtle difference with the original skip table definition proposed in the
Boyer—Moore algorithm. If we carefully observe the skip table generation
procedure in the Boyer-Moore algorithm, we find that the value of skip(pm,)
is always 0. In the Horspool version, skip(p,,) = m if p,, is unique within
the pattern (i.e., the character p,, does not appear in any other location in
the pattern); otherwise skip(p,) = m — k, where p,,_j is the penultimate
(rightmost) appearance of the character p,, in the pattern. The preprocess-
ing algorithm for computation of skip table in the Boyer~-Moore-Horspool
algorithm is as follows:

GENERATE-SKIP-TABLE(L, p)
1. Set pattern length, m « |p|;
. Initialize skip table, skip(c) = m for all symbols o € T;

. Initialize pattern index, j « 1;

. Increment pattern index, j — 7+ 1;

2
3
4. for jth character p; in the pattern, set skip(p;) « m — j;
5
6. if 1 < m —1 then go to step 4;

7

. Stop.

Note that the preprocessing algorithm for computation of skip table in the
Boyer-Moore-Horspool algorithm differs from the computation of the skip
table in the Boyer—Moore algorithm only in step 6. Here we now have “if
(4 < m) then go to step 4.” Since step 4 is iterated here for j = 1 tom — 1,
the value of skip(p,,) is never zero. This value will be m if p,, is unique, while
it becomes m — j if p; is the penultimate appearance of p,, in p. We show
in Fig. 4.10 two examples of skip tables, generated for patterns “abcde” and
“aecde”, using the Boyer—Moore (BM) and Boyer—-Moore-Horspool (BMH)
algorithms.

The Boyer-Moore-Horspool pattern matching algorithm is formally pre-
sented below.

BOYER-MOORE-HORSPOOL-ALGORITHM(t, p, X)
1. Initialize pattern length, m — |p};
2. Initialize the text length, n « |t;
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Compute skip table GENERATE-SKIP-TABLE(Y, p);
Initialize text pointer, ¢ « 0;

Initialize pattern pointer, j « m;

e @k W

while j > 0 and t;,; = p; (i.e., string character matches with pattern
character) do move pattern pointer to left, j «— 7 — 1;

7. if j = 0 (i.e., match is successful) then
print “pattern occurs at text index” i+ 1;

8. Shift the text pointer, i «— ¢ + skip(titm);

9. if i < n—m (i.e., text not yet fully traversed) then
go to step 5 to continue matching process.

10. stop.
Alphabet (2)={a,b, c, d, ¢, f, g}

Pattern 1 =abcde Pattern 2=aecde

Skip Table 1: Skip Table 2:
cex|BM (BMH cex|EM |BMH

a 4 4 a 4 4

b 3 3 b 5 5

c 2 2 m=35 c 2 2

d 1 1 d 1 1

e 0 5 e 0 3

f 5 5 f 5 5

g 5 5 g 5 5

Fig. 4.10 Example of skip tables.
Example 5: Here we demonstrate the effectiveness of the Boyer-Moore—

Horspool algorithm in matching patterns from simple English text. An ex-
ample is shown in Fig. 4.11. The alphabet considered in this example is £ =
{a,c,d,e, f,h, i, m,n,0,7,8,t, * '}. The symbol ¢ ’ represents the blank
character. Since the pattern “match” has only five characters {a, ¢, h, m, t},
the rest of the characters in X are considered to belong to the don’t care
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category as denoted by $ in Fig. 4.11. The broken arrows (]) represent the
position where the text character (¢;) mismatches with the corresponding pat-
tern character, and hence the pattern needs to be shifted right by skip(t;).
The value of skip(t;) is shown as the label of each broken arrow, that is aligned
with each mismatching character ¢; and the last character of the pattern (i.e.,

Ds = ‘h’).

2={ac,d, e, fh,i,mn,o,r st "}
$eX-{a c,h mt}), pattern="match”, length=35

skip{m)=4
skip(a) =3
skip(t) =2 matchmat(:l:]
skip(ec) =1 match '
skip(h) =5 myer :
shkip($) =5 mateh G| | L
matc b 4 .
matchmatﬂ" 5 i . i
match ' ia | :
s 00 E

v v v v i v H v
one of them matches and others mismatch from .....

i ]
: i

Fig. 411 Example of Boyer-Moore-Horspool string matching.

occurrence
1

For example, the matching process begins by comparing ts = ‘0’ with ps =
‘h’. Since they mismatch, the pattern is shifted by 5 positions right because
skip(o) = 5. Now the text character ;o = ‘e’ is compared with ps = ‘A’
Since they mismatch, the pattern is again shifted by 5 positions right because
skip(e) = 5. Subsequently, t;5 = ‘¢’ mismatches with ‘A’ and the pattern is
shifted by 2 because skip(t) = 2. Now the text character under consideration is
t17 = ‘h’, which matches with the rightmost character of the pattern. Hence

all the preceding characters are compared, and we find a complete match
of the pattern. Hence occurrence of the pattern beginning at text position
13 is reported. The pattern is now shifted right by skip(h) = 5 positions.
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Continuing in this manner, we find the second occurrence of the pattern at
location 35 as shown in Fig. 4.11.

It should be noted that the total number of character comparisons in this
example is 19, which is the same as the number of comparisons required by the
original Boyer—-Moore algorithm shown in Fig. 4.9. Moreover, Boyer-Moore-
Horspool algorithm is not only simpler for implementation, it also requires
less preprocessing overhead and often provides better average computation
performance.

4.2.5 Karp—-Rabin algorithm

In Karp-Rabin algorithm [4, 5], instead of directly comparing the pattern
characters with the text characters, the text is first pre-processed to map into
a sequence of integers. Here each character position in the text is mapped
into an integer, and this sequence of numbers is then compared with a fixed
integer representing the pattern. In general, if there are d symbols in the
alphabet ¥, then each symbol or character can be considered as a digit in the
radix-d notation for number representation. Hence we can map the pattern
p= “p1p2 - - pm” into a radix-d integer number I? whose decimal equivalent
is

IP=pxd™ 4 paxd™ 2+ 4 ppoy ¥ d* + P+ d°. (4.3)

Similarly we generate a radix-d integer number I} for each character location
t; in text ¢ = ‘tylat3 - - - t,’, whose decimal equivalent is

I-*i=ti*dm_1+t,'+1 *dm_2+"'+ti+m_2*dl+ti+m_1 * 0. (4.4)

Example 6: For the purpose of simple explanation, let us assume that the
alphabet consists of the decimal digits £ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. With
this decimal notation, we can assume that a string of m consecutive symbols
or characters is equivalent to an m-digits decimal number. The character
string ‘562837031’ can be considered to be the decimal number 52, 837,031.
We provide a simple pattern matching example, using Karp-Rabin algorithm,
in Fig. 4.12.

Here we consider a pattern p = “343” of length 3 and a text ‘1034343201’
of length 10 over an alphabet & = {0, 1, 2, 3, 4}. Hence each symbol in the
alphabet is a digit in the 5-radix number system notation. The decimal equiv-
alent of the integer map of the pattern p = “343” is the integer

IP =3x52 + 45 43+ 5% = 98.

The corresponding integer map, with 3-symbols length substring in first 8
character positions in the text, is I* = {28, 19,98, 119, 98,117, 85,51} as shown
in Fig. 4.12. We do not consider the integer map in the last two symbol posi-
tions because the pattern length is 3 and there will never be a match beginning
either at position 9 or 10. As shown by dotted arrows, the first integer 28 is
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2={0,1,2,3,4}

Pattern(p): | 3| 4| 3| mmp 17=98

Position: 1 2 3 4 5 6 7 8 9 10

Text@: [ 119 304 3 [ 4]3f2 0]

—
Integer w__ ¥ h 4
Map (7'): | 28| 19]@9)[110] @) [ 117] 85 [51 [* P |
MATCH 1 'M>CHZ

Fig. 4.12 Example of Karp—Rabin string matching.

obtained by taking the decimal equivalent of the first three consecutive sym-
bols starting at position 1 (i.e., 1 * 5% + 0 % 5! + 3 * 5° = 28). Analogously,
the second integer 19 is obtained from the three consecutive symbols starting
at the second position, and continuing in a similar manner the last integer
51 in position 8 is obtained by decimal number representation with the three
consecutive symbols starting at position 8. Upon scanning the integer map
and comparing each decimal with the integer number 98 (representing the
pattern), we find two matches at positions 3 and 5, respectively. These, in-
deed, are the valid matches when compared with the original text string. We
can compute I? in time O(m), because we can express it as

P=(((m*d+p)*d+ps)*d+- - +Ppm_1)*d+pm. (4.5)

This can be recursively computed in m steps, with 1 multiplication and 1
addition in each step, as follows.

1. Initialize integer map and pattern index, I? « 0, i = 1;

2. Update integer map and increment pattern index, I? — I? x d + p;,
ie—i+];

3. if i < m (i.e., pattern not completed) then
go to step 2 to continue computation;
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4. Return integer IP.

Here the first integer map I for the first text character (t;) can be com-
puted as

I=((-(t1xd+ts)xd+ts)xd+- +tm 1) *d+tm

in O(m) time. The remaining integer map, for the rest of the characters
t2, t3, **+, tn_m+1 in the text, can be computed in O(n — m) time. This is
because If,; can be computed incrementally from the value of I} using

L= —d™ st xd + tim. {4.6)

It is obvious that the multiplication factor d™~! can be precomputed in O(m)
in the worst case.

As an example, I} = 98 represents the integer map of the substring ‘343’
beginning at position 5 in the text as shown in Fig. 4.12. To compute the
next integer map I§, we need to drop the high-order digit t5 = 3 from the
substring and add the low-order digit g = 2 as

IE=(IL—5%%t5) %5+t =(98~25%3) 5 +2=117.

After the above preprocessing, I is scanned from left to right and compared
with I? to find all occurrences of pattern p in text ¢. Hence the Karp~Rabin
algorithm can be computed in O(m + n) time. However, there is a practical
problem with the above simplified approach for string matching, because of
the limited precision of digital computers for both processing and storage of
the numbers I? and If. If the alphabet d = |X| and m are large, each necessary
arithmetic computation for I? and I} with limited precision digital computer
cannot be performed in constant time. This problem has been solved by
adopting a hash function to compute the integers to represent the signature
of a substring, in order to represent them within the permitted precision. The
hash function permits generation of a signature so that If , can be derived
easily from I}.

The hash function is carefully chosen by adopting the modulo-q operation,
selecting ¢ in such a manner that d * q fits within the precision of a single
computer word, where d is the size of the alphabet ¥. Adjusting the recurrence
Eq. (4.6) to work with modulo-q, we get

o= —kxt)xd+1f,, (modg), 4.7

where £k = d™~! (mod q). The distributive property of the mod function,
namely,

(z+y) (modz2)=(z (modz)+y (modz)) (mod z), (4.8)

allows only the remainders to be stored after each stage of computation and
helps to keep the results small enough to fit within the allowed precision of



168 STRING MATCHING

2={0,1,2,3,4}, d=5, q=13

Pattern (p): ) 7= (3+5%4+4%5'43) mod 13 =7

Position: 1 2 3 4 5 6 g8 9 10
Tewt (9: {10, [ 3] 3 3 | 4 Ls [z o Ii
[———

Integer v

Map (/) |2 EL@I 2 [0 73] [* F |
VALID VALH, ﬁ{é
MATCH 1 MATCH 2

Fig. 4.13 Example of Karp—Rabin string matching algorithm with modulo operation.

a computer word. In Fig. 4.13, we demonstrate an example of the above
modulo-based matching operation.

The problem with the above approach is that the modulo operation is a
many-to-one function, and hence not unique. As a result, it can generate spu-
rious matches in addition to desired valid matches in the string as shown in
Fig. 4.13. For a large value of ¢, however, the appearance of spurious matches
will be significantly smaller. Therefore when a potential match is detected,
the substring is directly compared with the original pattern to check the va-
lidity of the match. The algorithm is formally explained below.

KARP-RABIN-STRING-MATCHING ALGORITHM(p, t)
1. Set pattern length, m « |p|;
. Initialize integer map for pattern, I? « 0;

2
3. Initialize integer map for text, If — 0;
4. Set k — d™! (mod q);

5

. for j —1tomdo
IP — (IPxd+p;) (modgq), If — (It xd+t;) (mod q);
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6. Initialize text pointer, i «— 1;

7. if It # I? (i.e., mismatch in current text position) then
go to step 9 to continue at the next text position;

8. if titip1 - titm—1 = P1P2 " - - Pm (i-e., match at text position 1) then
print “Valid match at location” i;

9. if i < n —m (i.e., text not completely scanned) then
Il — (IF—kxt;)xd+ 1}, (mod q) (ie., compute hash function at
position ¢ + 1);

10. Increment text pointer, 1 «— i + 1;

11. if i < n—m+1 (i.e., text not complete) then
go to step 7 to continue;

12. Stop.

Karp and Rabin proposed an algorithm [5] in 1987 to reduce the proba-
bility of occurrence of spurious matches, by randomly selecting a prime ¢ on
the occurrence of a spurious match, reinitializing the integer map after the
spurious match location, and thereafter continuing with the search.

4.3 STRING MATCHING IN BIOINFORMATICS

From information theoretic perspective, the DNA can be considered as a string
or sequence of symbols, where each symbol is one of the four bases adenine
[4], cytosine [C], guanine [G] and thymine [T]. Hence the alphabet in DNA
string search can be assumed to be L = {4,C, T, G}. Let us consider a DNA
fragment ‘AGATACGATATATACGATATAGA’, in which we would like to
search for a string ‘AT AT A’. Here we show the application of Knuth-Morris—
Pratt algorithm and Boyer—-Moore-Horspool algorithm in matching the DNA
substring ‘ATAT A’ in the DNA fragment

‘AGATACGATATATACGATATAGA'.

Example 7: We apply the Knuth—Morris—Pratt algorithm to match the
DNA substring ‘ATAT A’ in the DNA fragment
‘AGATACGATATATACGATATAGA’. The Nezt table for pattern “AT AT A”
is the same as the Next table for pattern “babad” of Example 4 as derived
in Fig. 4.7. The matching process to find the occurrences of DNA string
‘ATATA’ in DNA fragment ‘AGATACGATATATACGATATAGA’ is de-
picted in Fig. 4.14.

Example 8: Here we consider the Boyer—-Moore-Horspool algorithm for
the same DNA search, to detect occurrences of the DNA string ‘ATATA’ in
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Ji 12345
Patern: ATATA
Nexttable: [0, 1,0, 1, 3]

Maich 2
Text: AGATACGATATATACGATATAGA
t: 12345678 910102130415 16 17 18 19 20(21)22 23

j:1212341123454541]234541
ffpjirNynyNyyyyi’yYNNyyyyY
JFNext(j): 10 1.0 0 3 3100 3 310

Fig. 4.14 Example of searching the DNA string ‘ATATA’ in the DNA fragment
‘AGATACGATATATACGAT AT AGA’ with Knuth-Morris—Pratt algorithm.

the DNA fragment ‘AGATACGATATATACGATATAGA’. The matching
process is illustrated in Fig. 4.15. The character t5 = ‘A’ is compared with
the last character of the pattern ps = ‘A’, and they are found to be the
same. The comparison continues right to left until we detect a mismatch at
ts = ‘G’ with po = ‘T”. The pattern is shifted by 2 because skip(4) = 2.
Continuing this process, we find three occurrences of the pattern “ATAT A”
in the DNA fragment ‘AGATACGATATATACGATATAGA’ as shown in
Fig. 4.15. Total number of character comparisons required in this example is
23.

The principles and results of string matching have been used to solve many
problems in Bioinformatics. In the following section we describe the concepts
and principles behind approximate string matching algorithms and their so-
lutions. The concept of approximate string matching is also a very powerful
tool in DNA sequencing, alignment, homologue search, and many other similar
problems in Bioinformatics. We described these problems and their solutions
in greater detail in Chapter 10.
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Z={A,C, G T}
pattern =“ATATA”, length=35

skip(A) =2
skip(C) =5 ATATA
skp(G) =5 ATATA |
skip(T) =1 ATATA :
ATATA
ATATA '
ATATA g B
ATIATA i 5
{ Hv v v

AGATA CGATATATACGATATAGA

Match (1)==)

Matck (2) =)
Match (3) =)

Fig. 4.15 Example of Boyer-Moore-Horspool string matching using DNA.

4.4 APPROXIMATE STRING MATCHING

In the preceding sections we considered exact matching of patterns in text.
However, the string matching problem becomes challenging when the pattern
is not an exact one. This may be partially specified, as discussed in Sec-
tion 1.11. A generalization of the string matching problem is Approzimate
String Matching.

The approximate string matching problem deals with finding the occur-
rences of substrings in a text ¢ = f;t5---t, which are similar to a given
pattern p = pips - prn. By the word similar, we mean to allow for a lim-
ited number k > 0 of differences between the pattern and its occurrence in
the text. Before proceeding further, let us provide some basic definitions of
difference, also termed distance.



172 STRING MATCHING

4.4.1 Basic definitions

There are many definitions of “difference”, such as Hamming distance, Lev-
enshtein distance, Edit distance, etc. There are other complex measures of
‘difference’, mainly in computational biology, but most of the popular and
useful algorithms have been developed based on the Levenshtein distance.

4.4.1.1 Hamming distance: This is always measured between two strings of
equal length. Hamming distance between two strings is equal to the number
of symbol positions at which they differ. For example Hamming distance
between strings D = ‘SUNDAY’® and D’ = ‘MONDAY’ is 2 because they
differ in the first two character positions only.

4.4.1.2 Levenshtein distance: A string X = x5+, can be transformed
to another string Y = y1y2 * - y4 by applying one or more of the following three
‘edit operations’ in each character of the string, namely, insertion, deletion,
and substitution. The Levenshtein distance d(X, Y) between the strings X
and Y is the minimum number of edit operations required to transform the
string X into Y, or vice versa. For example, the Levenshtein distance between
two strings D = ‘SATURDAY’ and D’ = ‘SUNDAY" is d(D, D’) = 3, because
we can delete characters ‘A’ and ‘T’ and substitute ‘R’ in ‘SATURDAY’ by
‘N’ to convert ‘SATURDAY’ to ‘SUNDAY".

4.4.1.3 Edit distance: If the string X = xx2---z, can be transformed to
Y = y1y2-- -y, by applying one or more insertion and deletion operations
only, then the edit distance between X and Y is the minimum number of
insertion and/or deletion operations required to transform the string X into
Y, or vice versa. For example, the edit distance between D = ‘SATURDAY’
and D’ = ‘SUNDAY’ is d(D, D’) = 4 because we can delete characters ‘A4’,
‘T, and ‘R’ in ‘SATURDAY’ and then insert ‘N’ to convert ‘SATURDAY’
to ‘SUNDAY’. Although the substitution operation is not directly applied
to measure the edit distance, it can be accomplished by applying a deletion
operation followed by an insertion operation in a character position.

4.4.1.4 k-Approximate string matching problem: With the above def-
inition of difference or distance function(s), we can formally define the approx-
imate string matching problem as follows.

Given a pattern p = pyps - - - pm of length m characters, text t = t1tp---t,
of length n, where 0 < m < n, a positive integer k, and a distance function d,
find all the substrings y of text ¢ such that

d(p, y) < k. (4.9)

When the distance function d represents the Hamming distance, the prob-
lem is called an approximate string matching with k-mismatches. When d
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represents the edit distance, it is called an approximate string matching with
k-differences or k-ervors.

4.4.2 Wagner—Fischer algorithm for computation of string distance

The popular Wagner-Fischer algorithm [6] for computation of distance be-
tween two strings is based on the dynamic-programming approach [7]. Ac-
cordingly, distances between the prefixes of the strings are successively com-
puted from the previous values until the final result.

Let us assume that we are interested in computing the distance between
two strings p = p1p2 -+ pm and t = ¢33 ---t,. Also, let us assume that d; ;
represents the distance between the prefixes p(i) = pipe---p; and t(j) =
tita - - - t; of strings p and t, where i is the length of prefix p(Z) and j is length
of prefix of t(j), respectively. Hence

d; ; = d(p(3), t(5))

and dy,,, is the distance between the two strings p = p1p2---pm and t =
titg -+ - t,. Let us assume that w(p;, ¢;) represents the cost of symbol substi-
tution from p; to ¢; if p; # t;, w(p;, €) is the cost of deleting symbol p;, and
wfe, t;) is the cost of inserting symbol ¢; in a string. During computation of
the string distance, the values of d; ; are recorded in a two-dimensional array
dm + 1, n + 1]. The value of d; ; is computed using the recurrence formula

di,j =min{d;_y ;1 +w(p;, t;), di1,; +w(ps, €), di, j1 +w(e, t;)}. (4.10)
The boundary conditions for this recurrence relation are as follows.

dg,0 =0,

1
di,o = Ew(Pk, ) for1<i<m,
k=1

3
doj = wle,t;) forl<j<n (4.11)
k=1
For Levenshtein distance, we assume unit values for each deletion, insertion,
and substitution operations. The corresponding cost values are expressed as

w(p;, €) =1,
'!U(E,tj)=1,
1 if py#ty
w(pi, t,-)={ o it ziit; : (4.12)

Hence, for Levenshtein distance, the boundary computation are done as
follows.
doo =0,
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dio=1 for 1<i<m,
doj=j for 1<j<n. (4.13)

Using the array d, it is possible to determine a minimal-cost trace and
hence a least-cost editing sequence from string p to string ¢. The algorithm
can be expressed as follows.

LEAST-COST-TRACE-COMPUTATION({d[m + 1, n+ 1], p, )
1. Initialize ¢ « m, for string p of length m;
2. Initialize j «— n, for string t of length n;

3. if (di,j = di—l,j +‘U)(p,', 6)) then
compute 7 + 1 — 1 and go to step 7 to continue;

4. if (d—i,j =da -1+ ’W(E, tj)) then
compute j « j — 1 and go to step 7 to continue;

5. print (4, §) for symbol substitution from p; to ¢;;
6. computet «—i—1,7 «— §—1;

7. if i > 0 and j > O (i.e., scanning not complete) then
go to step 3 to continue cost computation;

8. Stop.

4421 Example 9: Let us consider two strings p = ‘SUNDAY’ and
t = ‘SATURDAY’. The length of these two strings are 6 and 8, respectively.
Hence we compute the values in the array d[7, 9] based on the recurrence
formula for d;, ; for ¢ = 0 to 6 and j = 0 to 8. Entries in the two-dimensional
array d[7, 9] are shown in Fig. 4.16(a).

Here the value of d,,, = dg,s = 3. Hence the string distance (Leven-
shtein distance) between the strings ‘SATURDAY’ and ‘SUNDAY” is 3. The
minimal-cost trace and hence the least-cost editing sequence can be generated
from the completed distance array. Accordingly, by applying LEAST-COST-
TRACE-COMPUTATION for d[7, 9], the following trace T is generated by listing
the output of the algorithm in reverse order.

T= {(17 1)! (2, 4), (41 6), (5, 7), (6, 8)}

The transformation of the string ‘SUNDAY’ to ‘SATURDAY" is depicted in
Fig. 4.16(b). The characters in p (i.e., ‘SUNDAY" in this example) untouched
by edges are substituted (i.e., ‘N’ is substituted by ‘R’), and this is indicated
by a broken arrow. The characters in t (i.e., ‘SATURDAY" in this example)
untouched are inserted (i.e., ‘A’ and ‘T7).
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SATURTDAY
012 3 4 56 7 8
sl1 01 2 3 45 6 7
U211 2 234556 @
N3 22 2 3 34 5 6
Dl 433 3 3 43 4 5
Al S 43 4 4 4 4 3 4
Y| 6 54 4 5 55 4 3
SUNDAY
/ Y ()
SATURDAY

Fig. 4.16 Wagner-Fischer algorithm showing (a) matrix computation for distance
function and (b) transformation, of the string ‘SUNDAY"’ to ‘SATURDAY".

4.4.22 Longest common subsequence problem: A longest common subse-
guence of two strings is a subsequence, common to both strings, having the
maximal length. Given two strings p and t, with |[p| = m and |t| = n, where
0 < m < n, the longest common subsequence problem is to find the longest
common subsequence lcs(p, t) of two strings p and t as well as its length
lles(p, 1)

After computation of the complete distance array and finding the least-cost
trace T, it is fairly straightforward to find the lcs(p, t). The constituents of
the lcs(p, t) are p;, or equivalently ¢;, such that (i, j) € T and p; = t;. So in
above example, the longest common subsequence for strings p = ‘SUNDAY’
and t = ‘SATURDAY" is

les(p, t) = p1popapsps = titstetrts = ‘SUDAY'.

The longest common subsequence has been used in many application areas,
such as detection and correction of spelling error. It has also been used in
Bioinformatics for molecular sequence matching, both for exact match and
for common substrings up to k-mismatches [8].
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ACEDETF ABCEE
01 23 45 6 7 8 91011
00000 O0OOOOO0TPO
Al1 01 111101111
B2 11222210122
C|3 21233321012
Dl4 3 2 2 2 3 43 2112
El]5 43 2 3 2 3 43211
1‘ 1‘

fMatch 2 (ACEDE) T I Match 5 (ABCEE)

Match 1 (ACE) oo %ztgz ét) (ABCE)

Fig. 4.17 Example of text search with k-mismatches for k = 2.

4.4.3 Text search with k-differences

The dynamic programming approach for computation of Levenshtein dis-
tance between two strings provides the foundation of text searching with
k-differences or k-errors. Here we search for occurrences of the pattern p
in text ¢, with a maximum difference of k& characters between the pattern and
a text substring in text £. The only difference of this approach with Leven-
shtein distance computation is that we must allow for a substring occurrence
to begin at any text position. This is achieved by adjusting the boundary
condition in Eq. (4.13) to do ; = 0 for all j = 0 to n, because the minimum
distance between the empty string ¢ and any substring of £ is 0. The computa-
tion of the recurrence relation to generate all other d; ; are identical to that of
the Levenshtein distance by Eq. (4.13). Upon completion of the computation
of all the entries in the array d{m + 1, n+ 1], any value not exceeding k in the
last row m indicates a position in the text where a substring having at most
k-differences with the pattern ends.

4.4.3.1 Example 10: Let us consider two strings, namely, a pattern
p = “ABCDE” and a text t = ‘ACEDEFABCEE’. The complete distance
array corresponding to these two strings is shown in Fig. 4.17. For k = 2,
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we find from row 5 of the array that there are five occurrences of the pattern
“ABCDE” with up to 2-differences in the text, ending at text positions 3,
5, 9, 10, and 11. The corresponding matching text substrings are ‘ACE’,
‘ACEDE’, ‘ABC’, ‘ABCE’, and ‘ABCEE’, respectively.

4.5 COMPRESSED PATTERN MATCHING

One important operation that is fundamental to many database applications
is to be able to search a large database to find the occurrence of pattern(s).
In order to exploit the benefits of data compression, to conserve internal pro-
cessor storage and computation resources, it is naturally desirable to perform
pattern matching directly on compressed data without inherently decompress-
ing it. We call this the compressed pattern matching problem.

Extra overhead caused by data compression is a major bottleneck in its
use in many applications, where data need to be retrieved and manipulated
often based on the pattern search operation. One way to correct this prob-
lem is to develop string or pattern matching techniques to operate directly
on compressed data. Although effective data compression techniques have
been around for almost half a century, little work has been addressed in this
direction.

Let ¢(t) denote a compressed text string corresponding to a text ¢. The
compressed pattern matching problem is to find the occurrence(s) of a pattern
p in t by searching directly into the compressed text c(t).

The compressed pattern matching problem becomes even more challenging
when the pattern is not fully specified, because of appearance of don’t care
character(s) in it. The problem of searching a compressed text using Huff-
man coding type tree-based coding or run-length encoding seems superficially
straightforward. The idea is to apply any well-known string search algorithm
[1, 3, 5, 9] on ¢(t) with respect to the compressed pattern c¢(p). A close exam-
ination of the algorithm reveals that such an approach is not very practical in
many applications. If we use Huffman encoding of Section 3.6.2, an implicit
decompression process has to be performed to determine the character bound-
ary (that is the starting bit of each encoded symbol). We have demonstrated
this with an example in Fig. 4.18.

Acharya [10] designed hardware algorithms to handle this problem, by gen-
erating a signal to indicate the boundary of a character in the compressed text
where the linear pattern matching takes place. If a potential match is found
in the compressed text, it is further checked to determine whether a character
boundary signal is detected as well. If a character boundary is detected in con-
junction with the occurrence of the compressed pattern, then the occurrence of
the pattern is considered to be a valid match as depicted in the block diagram
of Fig. 4.18. Acharya [10] also proposed how to handle the compressed pat-
ter matching problem, in these hardware algorithms, even when the patterns
are partially specified with either fized-length don’t care characters (FLDC)
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Character Huffman
Code
Text(f): abbacdabca
a 0
b 10 Pattern(p): ab
c 110
d 111 | Compressed Patternc(p ) : 010

False Match
Compressed Text c(?): 0101001101110101100

True Match

o(p)— ) .
Pattern Matching ‘I“[_'
r AND True Match

«e L Character Boundary I

Detection True

Fig. 4.18 Example of compressed pattern matching nsing Huffman code.

or variable-length don’t care characters (VLDC). The same working principle
can be applied to any tree-based code such as Shannon-Fano code [11], Elias
Code [12], etc.

The compressed pattern matching problem with Lempel-Ziv codes (of Sec-
tion 3.12) is very difficult, due to the fact that for Lempel-Ziv codes a sub-
string may have multiple encoding in the compressed file [10]. Some attention
has recently been paid to the search of patterns in text compressed with
variations of Lempel-Ziv coding. The first algorithm for pattern search in
LZ78 coded files was proposed in [13]. A randomized algorithm to determine
whether a pattern is present in an LZ77 compressed text was presented in
Ref. [14]. However, these algorithms are very complex. There is tremendous
need for further research and development in this area of compressed pattern
matching, for practical applications and their usage in data mining in the
near future. Acharya proposed a general formulation for compressed pattern
matching in Lempel-Ziv codes in two steps. The first step is to preprocess the
given pattern to be searched using the “Codebook” generated during Lempel-
Ziv compression of the text. The compressed matching is done in the second
step, using a graph generated in the pattern preprocessing step [10].

Although the computational complexity of these methods are polynomial
in nature, still it is very high for any practical implementation. Hence de-
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velopment of computationally efficient algorithms for pattern matching in
compressed domain remains a challenge. Development of these algorithms
especially suitable for data mining applications will be even more interesting
to explore and offer promises for performance of future data mining systems.

4.6 CONCLUSIONS AND DISCUSSION

In this chapter, we presented fundamentals of string matching algorithms and
their applications in different domains. We have presented several classical
and pioneering algorithms in this area of study. We have also introduced the
concept of the compressed pattern matching problem, in order to explore how
pattern matching can be employed directly in compressed databases without
involving explicit decompression. In addition to the description of the algo-
rithms, we have presented a number of examples in each case to demonstrate
clearly how they work.

The area of compressed pattern matching being still nascent, we wanted to
motivate readers to pay attention in this direction in order to make significant
progress in text mining and data mining applications in general. The results
of string matching have paved the way for many text processing applications,
including search, edit, and indexing of text databases. The search engines
for the World Wide Web have been designed based on the results from string
matching research. Text based search and retrieval systems are being used in
text mining and Web mining applications as well. These issues are covered in
further detail in Chapter 9.

The principles of string matching have been widely used in Bioinformat-
ics for DNA sequence search, sequencing, alignment, etc. The concepts be-
hind approximate string matching have been particularly useful for homology
search and related problems in large genome databases. All these are de-
scribed in greater detail in Section 10.3.4 of Chapter 10.
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Classification in Data
Mining

5.1 INTRODUCTION

As the quantity and variety of data available increases, there arises a com-
mensurate need for robust, efficient, and versatile data exploration techniques
that can be supervised or unsupervised. Classification, as explained in Sec-
tion 1.8, is a method of categorizing or assigning class labels to a pattern
set under the supervision of a teacher. Decision boundaries are generated to
discriminate between patterns belonging to different classes. The patterns are
initially partitioned into training and test sets, and the classifier is trained on
the former. The test set is used to evaluate the generalization capability of the
classifier. Examples of classification from diverse domains include (i) medical
patients based on the disease, (ii) a set of images containing a red rose, from
an image database, (iii) a set of documents describing “data mining”, from a
document database, (iv) equipment malfunction based on cause, and (v) loan
applicants based on their likelihood of payment. For example, in the latter
case the problem is to predict a new applicant’s loan eligibility given old data
about the customers (like age, salary, profession, location) and their payment
patterns.

A decision tree classifier is one of the most widely used supervised learn-
ing methods used for data exploration. It is easy to interpret and can be
re-represented as If-then-else rules. It approximates a function by piecewise
constant regions and does not require any prior knowledge of the data distri-
bution. This classifier works well on noisy data. A decision tree aids in data
exploration in the following manner [1].

181
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o It reduces a volume of data by transformation into a more compact
form, that preserves the essential characteristics and provides an accu-
rate summary.

o It discovers whether the data contains well-separated classes of objects,
such that the classes can be interpreted meaningfully in the context of
a substantive theory.

e It maps data in the form of a tree so that prediction values can be
generated by backtracking from the leaves to its root. This may be used
to predict the outcome for a new data or query.

The concept of decision trees was popularized by Quinlan with ID3 [2],
which stands for Interactive Dichotomizer 3. Systems based on this approach
use an information theoretic measure, like entropy, for assessing the discrimi-
natory power of each attribute. The most important feature of decision trees
is their capability to break down a complex decision-making process into a col-
lection of simpler decisions, thereby providing an easily interpretable solution
[3]. ID3 is a popular and eflicient method of making decisions for classification
of symbolic data and is generally not suitable in cases where numerical values
are to be operated upon. Since most real-life problems deal with nonsym-
bolic (numeric, continuous) data, they must be discretized prior to attribute
selection. Classification and Regression Trees (CART) [4] and C4.5/C5.0 [5],
however, do not require such prior discretization. Here the thresholds are
dynamically computed depending on the conditions along a path, and they
often result in the multiple use of a particular attribute with different thresh-
olds. This can, however, lead to an increased accuracy at the cost of reduced
comprehensibility.

The major decision tree algorithms are grouped as (i) classifiers from the
machine learning community: ID3, C4.5, CART; and (ii) classifiers for large
databases [6]: SLIQ, SPRINT, SONAR, RainForest. Generally, a pruning
phase is followed by a building phase. During the building phase the algorithm
recursively splits nodes, using the best splitting attribute for that node. It is
found that smaller, imperfect decision trees generally achieve better accuracy.
Hence leaf nodes are recursively pruned to prevent over-fitting.

As discussed in Section 2.2.3, the advantages of artificial neural networks
(ANNSs) for classification include the learning of complicated, or highly non-
linear, class boundaries, fast application, and handling of a large number of
features. Like decision trees, they are also nonparametric. The major disad-
vantages of ANNs encompass a slow training time, harder interpretation, and
a difficult implementation in terms of the optimal number of nodes. Some of
the popular ANN models, used for classification, include multilayer perceptron
and radial basis function networks (7).

Both decision trees and ANNs are the most commonly used tools for pattern
classification. Note that the decision tree approach is monothetic. It consid-
ers the utility of individual attributes one at a time and may miss the case
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when multiple attributes are weakly predictive separately but become strongly
predictive in combination. However, neural approaches are polythetic. Here
multiple attributes can be considered simultaneously.

Probabilistic learning (8] is used to calculate explicit probabilities for the
hypotheses and is among the most practical approaches to certain types of
learning problems. When this is incremental, each training example can be
used to incrementally increase or decrease the probability that a hypothesis is
correct. Prior knowledge can also be combined with the observed data. One
can use probabilistic prediction to infer multiple hypotheses, weighted by their
probabilities. Even when Bayesian methods are computationally intractable,
they can provide a standard of optimal decision making against which other
methods can be measured.

Instance-based learners work on the basis of minimum distance from in-
stances or prototypes [8]. Some typical models include the k-nearest neighbor
classifier, radial basis function networks, and case-based reasoning. Nearest-
neighbor classifiers typically define the proximity between instances, find the
neighbors of a new instance, and then assign to it the label for the majority
class of its neighbors. Case-based reasoning [9] is generally used when the
attributes are more complicated than simple real-valued.

Support vector machines (SVMs) are a general class of learning architec-
tures, inspired by the statistical learning theory, that performs structural risk
minimization on a nested set structure of separating hyperplanes [10]. Given
a training data, the SVM learning algorithm generates the optimal separating
hyperplane in terms of generalization error. SVMs have been found to be very
useful in handling data mining problems.

Section 5.2 of this chapter deals with different decision tree classifier mod-
els. Issues related to overfitting, pruning, and rule extraction are discussed
in this context. Fusion of decision trees and ANNs is also presented. This is
followed by Bayesian classifiers, instance-based learners, and support vector
machines in Sections 5.3-5.5, respectively.

A problem with ID3 is that it cannot provide any information about the
intersection region where the pattern classes are overlapping. This can be
handled using fuzzy decision trees. Section 5.6 describes a method of design-
ing fuzzy ID3 and extracting linguistic rules from this for encoding a fuzzy
MLP [11, 12]. This generates a fuzzy knowledge-based network. Note that
knowledge-based networks provide for initial embedding of prior knowledge
about the domain. This is a desirable feature for data mining. Use of fuzzy
sets enables uncertainty handling in this framework. Fuzzy decision trees pro-
vide a way of encoding a fuzzy knowledge-based network. Details on method-
ologies involving other soft computing tools are provided in Section 8.2.3.

The fuzzy ID3 formulates a scheme for automatic linguistic discretization
of continuous attributes, based on quantiles. A novel concept of measuring
the goodness of a decision tree, in terms of its compactness (size) and efficient
performance, is provided. Linguistic rules are evaluated using quantitative
indices. The knowledge encoding of the network incorporates the frequency
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age
. >/ 30
<120 > 20
< 30
high risk ’7 car type low risk
sports

Fig. 5.1 A decision tree.

of samples and depth of the attributes in the fuzzy decision tree. Fuzziness
measures, in terms of class memberships, are used at the node level of the
tree to take care of overlapping classes. The effectiveness of the network, in
terms of recognition scores, structure of decision tree, performance of rules,
and network size, is demonstrated on real life data. The chapter is concluded
in Section 5.7.

5.2 DECISION TREE CLASSIFIERS

A decision tree classifier splits a dataset on the basis of discrete decisions,
using certain thresholds on the attribute values. Figure 5.1 depicts a typical
decision tree demonstrating the risk factor associated with rash driving. There
is a root node on top of the tree structure, indicating the feature (or attribute)
that is split first for highest discrimination. The internal nodes of the tree
represent simple decision rules on one or more attributes, while the leaf nodes
are the predicted class labels. Tree traversal along the left branch in the figure
indicates that persons with age < 20 involve the high risk category, while the
right branch depicts that people with age > 30 are associated with low risk
irrespective of the car type. The third (middle) branch, on the other hand, is
traversed for 30 > age > 20 and leads to a second split on attribute car type
before arriving at a final decision.

An object X is, therefore, classified by passing it through the tree starting
at the root node. The test at each internal node along the path is applied
to the attributes of X, to determine the next branch along which X should
go down. The label at the leaf node at which X ends up is output as its
classification. An object is misclassified by a tree if the classification output
by the tree is not the same as the object’s correct class label. The proportion of
objects correctly classified by a decision tree is known as its accuracy, whereas



DECISION TREE CLASSIFIERS 185

the proportion of misclassified objects is the error. There exist several well-
known tree learning algorithms in literature 1, 6]. Some of these are ID3 (2],
its successor C4.5 [5], CART [4], SLIQ [13], SPRINT [14], SONAR [15], and
RainForest [16].

Greedy top-down construction is the most commonly used method for tree
growing. A hierarchical model is constructed top-down, starting from the
entire data, partitioning it into subsets, and recursing the partitioning proce-
dure using a splitting rule. When more than one tree can describe a dataset
perfectly, one needs metrics to quantify the goodness of trees.

The process of tree building starts with an empty tree and the entire train-
ing set, and it broadly proceeds as follows until no more splits are possible.

1. If all the training examples at the current node t belong to category C;,
create a leaf node with the class (category) C;.

2. Otherwise, score each one of the set of possible splits S, using a goodness
measure.

3. Choose the best split S* as the test at the current node.

4. Create as many child nodes as there are distinct outcomes of S*, and
partition the training data using S* into the child nodes.

5. A child node t is said to be pure if all the training samples at ¢ belong
to the same class. Repeat the previous steps on all impure child nodes.

Tree construction can proceed by maximizing global mutual information of
the whole tree, or by locally optimizing information gain. Sometimes distance
measures like the Gini inder of diversity [Eq. (5.2)] is also used. Both locally
optimizing information gain as well as distance-based splitting criteria are
found to produce small, shallow and accurate trees. In order to split at a
node, the algorithm proceeds as follows:

e Intuitively pick an attribute that best separates instances of the different
classes.

o Quantify the intuitive factor for measuring the separability: Define an
impurity I(S) of an arbitrary set S consisting of I classes. It can be

— Information entropy, measured as

1
Entropy(S) = - ) _ pilogpi, (5.1)

i=1

where p; is the relative frequency of class 7 in .S (@ priori probabil-
ity). This has a value of zero when all the patterns belong to only
one class, and it has a value of one when all the classes are in equal
number.



186 CLASSIFICATION IN DATA MINING

— Gini index, expressed as

1
Gini(S) =1-Y _pl. (5.2)

i=1

e Compute the information gain on partitioning S into r subsets. This
is measured as the impurity of S less the sum of weighted impurity of
each subset. For example,

Gain(S, Sy,...,5,) =I1(S) = '%1[-'1(5,.), (5.3)
J=1

where || is the cardinality of S, and I(S) is the intuitive factor defined
as either Entropy(S) or Gini(S) using eqns. (5.1)-(5.2).

e The attribute that provides the largest information gain is chosen to
split the node. However, one needs to enumerate all possible splitting
points for each attribute.

It has been observed [1] that the Gini index has difficulty when there are
a relatively large number of classes. This index emphasizes equal-sized off-
springs with purity of all children. Information gain, on the other hand,
is biased towards attributes with a large number of possible values. They
typically produce trees that are extremely deep and difficult to interpret.
However, nothing definite can be said about the consistent superiority of one
measure over the other. Measures like information gain and Gini index are
all concave (never reporting a worse goodness value after trying a split than
before splitting), so that there is no natural way of assessing where to stop
further expansion of a node. Techniques like minimum description length
(Section 5.2.5) are often used to decide which splits to prefer over others, and
also for pruning.

A regression tree is a decision tree with continuous class labels. It approxi-
mates a function with piece-wise constant regions. When computing the split
criteria for regression trees, one determines the predicted value for a set S
as the average of all values in S. The error is the square root of the sum of
square of difference of each member of S from the predicted average. The ob-
jective is to pick the smallest average error. The splits are made on categorical
attributes.

One of the main difficulties of inducing a recursive partitioning structure is
knowing when to stop, with a right-sized tree. For moderate-sized problems,
the critical issues are generalization accuracy. For very large tree classifiers,
on the other hand, the critical issue is optimizing structural properties like
height and balance of the tree. The tree quality typically depends more on
good stopping rules than on splitting rules [1]. Pruning is a method widely
used for obtaining right-sized trees. It proceeds by building a complete tree
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(in which splitting no leaf node further will improve the accuracy on the train-
ing data) and then removing subtrees that are not contributing significantly
towards generalization accuracy. This method is better than stop-splitting
rules by partly compensating for the suboptimality of greedy tree induction.
For example, consider a very good node T: a few levels below a not-so-good
node T;. Here a stop-splitting rule will stop tree growth at T}, whereas prun-
ing may give a high rating for, and retain, the whole subtree at T;. Typically,
pruning is found to be more beneficial for accuracy with increasing skewness
in class distribution and/or increasing sample size.

The advantages of decision trees include reasonable training time, fast ap-
plication, easy interpretation, easy implementation, and ability to handle
large number of features. Since they do not make any assumptions about
the underlying data distribution, they are specially suited for exploratory
knowledge discovery. Their major demerits include an inability to handle
complicated relationships between features, generation of simple axis-parallel
decision boundaries, and their problems with lots of missing data. Sample
size versus dimensionality of a dataset greatly influences the quality of trees
constructed from it. The shortcomings of decision tree models, as well as
solutions to alleviate them, have been extensively reported in literature [1].

In the remaining part of this section we describe some decision tree classifier
models and discuss issues related to their overfitting, rule extraction, and
fusion with neural networks.

5.2.1 1D3

ID3 uses an information theoretic approach. The procedure is that at any
point one examines the feature that provides the greatest gain in information
or, equivalently, the greatest decrease in entropy. Entropy is measured by

Eq. (5.1).
The general case is that of N labeled patterns partitioned into sets belong-
ing to classes C;, 1 = 1,2,3,...,l. The population in class C; is n;. Each

pattern has n input features and each feature can take on two or more values.

5.21.1 Algorithm The ID3 prescription for synthesizing an efficient decision
tree can be stated as follows:

1. Calculate the initial value of entropy

! l
Entropy = Z —(n;/N)logy(n;/N) = Z —p; log, pi, (54)

i=1 i=1
where N is the total number of labeled patterns.

2. Select that feature which results in the maximum decrease in entropy
or gain in information, according to Eq. (5.3), to serve as the root node
of the decision tree.
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3. Build the next level of the decision tree providing the greatest decrease
in entropy.

4. repeat steps 1 through 3. Continue the procedure until all subpopula-
tions are of a single class and the system entropy is zero.

At this stage, one obtains a set of leaf nodes (subpopulation) of the decision
tree, where the patterns are of a single class. Note that there can be some
nodes which cannot be resolved any further.

Table 5.1 Sample dataset for ID3, along with a split on height

Height | Hair | Eyes Class || Height | Hair | Eyes Class
tall blond | brown (&) blond | brown Ch1
tall dark | blue C1 dark | blue C1
tall dark brown C1 tall dark brown C1
short dark blue C red blue Cs
short blond | brown C blond | blue C,
tall red blue Ca dark blue C,
tall blond | blue Cs short | blond | brown Ch
short blond | blue C: blond | blue Cs

5.2.1.2 Example 1: Let us illustrate the tree formation with a simple exam-
ple. Table 5.1 provides a sample dataset of eight patterns, containing three
attributes (height, hair color, eye color) and two output classes (C1, C2). The
initial value of entropy is computed by Eq. (5.4) as

5 5 3 3 .
—§ log2 g - g 10g2 g = 0.954 bits.

Splitting on the basis of attribute height leads to five samples along the tall
branch and three along the short branch, as depicted in columns 5 to 8 of the
table, having corresponding entropies of

3

2 2 3 .
_= 5% log, 5 =0.971 bits

5 log,

and 1, 1 2. 2
~3 log, 373 log, 3= 0.918 bits,

respectively. The information gain with height is evaluated, using Eq. (5.3),
as

0.954 — [g * (0.971) + g * (0.918)] = 0.954 — 0.951 = 0.003 bits.
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Similarly, the corresponding gains based on attributes hair and eyes are 0.454
and 0.347 bits, respectively. Maximizing, we find that the split with hair gives
the largest information gain. Hence attribute hair is chosen as the root node.
This procedure is continued in subsequent levels of the resultant tree for the
remaining attributes. It is found at the second level that a split on attribute
eyes yields a larger information gain and all nodes are resolved (or pure). This
completes the tree building procedure.

5.2.2 IBM IntelligentMiner

Here the decision tree uses the Gini index. If a dataset S contains examples
from | classes, gini(S) is defined by Eq. (5.2). If a dataset S is split into two
subsets S; and Sz, then the Gini index Gini(9) is defined as

Gim',pm (S) = ITSgll—IGZ’IlZ(Sl) + %G'Lnl(Sz) (55)

The attribute that provides the smallest Ginispi:(S) is chosen to split the
node.

5.2.3 Serial PaRallelizable INduction of decision Trees (SPRINT)

SPRINT [14] is a decision-tree classifier for data mining. It is able to handle
large disk-resident training sets, with no restrictions on training-set size, and
is easily parallelizable. One list is maintained for each attribute in the dataset.
The entries in an attribute list consist of the attribute value, class value, and
record ID (RID). The algorithm uses a hash tree proportional to the training
set size to store the RIDs.

5.2.3.1 Example 2: Let asample dataset as in Table 5.2 provide risk factors

(high, low) for the numeric attribute Age and the categorical attribute car
type.

Table 5.2 A sample attribute list for SPRINT

age | car type | risk | RID
23 | family high
17 | sports high
43 sports high
68 | family low
32 | truck low
20 | family high

G W N = O
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Lists for continuous (numeric) attributes are in sorted order and may be
disk-resident. Each leaf-node has its own set of attribute lists representing the
training examples belonging to that leaf. The Gini index of Eq. (5.2) is used
to evaluate the split points, using only the class frequencies in the process.
For each attribute the algorithm evaluates splits using the attribute list, and
keeps that split with the lowest Gini index.

Let us refer to the data of Table 5.2. The initial attribute lists for the root
node are given in Tables 5.3 and 5.4 corresponding to attributes age and car
type, respectively.

Table 5.3 Initial numeric attribute list for root node

age | risk | RID
17 | high 1
20 | high 5
23 | high 0
32 low 4
43 | high 2
68 | low 3

Table 5.4 Initial categorical attribute list for root node

car type | risk | RID
family high 0
sports high 1
sports high 2
family low 3
truck low 4
family high 5

The split is evaluated for every value in each attribute list, for determining
the optimal choice at a given tree-node. While performing the splits, the
attribute lists of every node must be divided among the two children. The
building phase proceeds by initializing the root node of the tree, while a node «
that can be split exists. For each attribute A4;, all possible splits are evaluated
on A;. Then the best split is used to split node a.

In case of continuous attribute A;, splits of the form value(4;) < v are
considered. From Table 5.3, we find the class frequencies for the root node
to be 4, 2 for risk high, low, respectively. The split age < 20 generates class
histograms with frequencies of 1, 0 for risk high, low, respectively, in case
of